ﻻ يوجد ملخص باللغة العربية
At an early age, human infants are able to learn and build a model of the world very quickly by constantly observing and interacting with objects around them. One of the most fundamental intuitions human infants acquire is intuitive physics. Human infants learn and develop these models, which later serve as prior knowledge for further learning. Inspired by such behaviors exhibited by human infants, we introduce a graphical physics network integrated with deep reinforcement learning. Specifically, we introduce an intrinsic reward normalization method that allows our agent to efficiently choose actions that can improve its intuitive physics model the most. Using a 3D physics engine, we show that our graphical physics network is able to infer objects positions and velocities very effectively, and our deep reinforcement learning network encourages an agent to improve its model by making it continuously interact with objects only using intrinsic motivation. We experiment our model in both stationary and non-stationary state problems and show benefits of our approach in terms of the number of different actions the agent performs and the accuracy of agents intuition model. Videos are at https://www.youtube.com/watch?v=pDbByp91r3M&t=2s
Imitation learning in a high-dimensional environment is challenging. Most inverse reinforcement learning (IRL) methods fail to outperform the demonstrator in such a high-dimensional environment, e.g., Atari domain. To address this challenge, we propo
We propose a unified mechanism for achieving coordination and communication in Multi-Agent Reinforcement Learning (MARL), through rewarding agents for having causal influence over other agents actions. Causal influence is assessed using counterfactua
Learning effective policies for sparse objectives is a key challenge in Deep Reinforcement Learning (RL). A common approach is to design task-related dense rewards to improve task learnability. While such rewards are easily interpreted, they rely on
We study the role of intrinsic motivation as an exploration bias for reinforcement learning in sparse-reward synergistic tasks, which are tasks where multiple agents must work together to achieve a goal they could not individually. Our key idea is th
Making the right decision in traffic is a challenging task that is highly dependent on individual preferences as well as the surrounding environment. Therefore it is hard to model solely based on expert knowledge. In this work we use Deep Reinforceme