ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Learning Techniques for Future Intelligent Cross-Media Retrieval

107   0   0.0 ( 0 )
 نشر من قبل Sadaqat Ur Rehman
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the advancement in technology and the expansion of broadcasting, cross-media retrieval has gained much attention. It plays a significant role in big data applications and consists in searching and finding data from different types of media. In this paper, we provide a novel taxonomy according to the challenges faced by multi-modal deep learning approaches in solving cross-media retrieval, namely: representation, alignment, and translation. These challenges are evaluated on deep learning (DL) based methods, which are categorized into four main groups: 1) unsupervised methods, 2) supervised methods, 3) pairwise based methods, and 4) rank based methods. Then, we present some well-known cross-media datasets used for retrieval, considering the importance of these datasets in the context in of deep learning based cross-media retrieval approaches. Moreover, we also present an extensive review of the state-of-the-art problems and its corresponding solutions for encouraging deep learning in cross-media retrieval. The fundamental objective of this work is to exploit Deep Neural Networks (DNNs) for bridging the media gap, and provide researchers and developers with a better understanding of the underlying problems and the potential solutions of deep learning assisted cross-media retrieval. To the best of our knowledge, this is the first comprehensive survey to address cross-media retrieval under deep learning methods.



قيم البحث

اقرأ أيضاً

Cross-media retrieval is to return the results of various media types corresponding to the query of any media type. Existing researches generally focus on coarse-grained cross-media retrieval. When users submit an image of Slaty-backed Gull as a quer y, coarse-grained cross-media retrieval treats it as Bird, so that users can only get the results of Bird, which may include other bird species with similar appearance (image and video), descriptions (text) or sounds (audio), such as Herring Gull. Such coarse-grained cross-media retrieval is not consistent with human lifestyle, where we generally have the fine-grained requirement of returning the exactly relevant results of Slaty-backed Gull instead of Herring Gull. However, few researches focus on fine-grained cross-media retrieval, which is a highly challenging and practical task. Therefore, in this paper, we first construct a new benchmark for fine-grained cross-media retrieval, which consists of 200 fine-grained subcategories of the Bird, and contains 4 media types, including image, text, video and audio. To the best of our knowledge, it is the first benchmark with 4 media types for fine-grained cross-media retrieval. Then, we propose a uniform deep model, namely FGCrossNet, which simultaneously learns 4 types of media without discriminative treatments. We jointly consider three constraints for better common representation learning: classification constraint ensures the learning of discriminative features, center constraint ensures the compactness characteristic of the features of the same subcategory, and ranking constraint ensures the sparsity characteristic of the features of different subcategories. Extensive experiments verify the usefulness of the new benchmark and the effectiveness of our FGCrossNet. They will be made available at https://github.com/PKU-ICST-MIPL/FGCrossNet_ACMMM2019.
This paper considers the task of matching images and sentences by learning a visual-textual embedding space for cross-modal retrieval. Finding such a space is a challenging task since the features and representations of text and image are not compara ble. In this work, we introduce an end-to-end deep multimodal convolutional-recurrent network for learning both vision and language representations simultaneously to infer image-text similarity. The model learns which pairs are a match (positive) and which ones are a mismatch (negative) using a hinge-based triplet ranking. To learn about the joint representations, we leverage our newly extracted collection of tweets from Twitter. The main characteristic of our dataset is that the images and tweets are not standardized the same as the benchmarks. Furthermore, there can be a higher semantic correlation between the pictures and tweets contrary to benchmarks in which the descriptions are well-organized. Experimental results on MS-COCO benchmark dataset show that our model outperforms certain methods presented previously and has competitive performance compared to the state-of-the-art. The code and dataset have been made available publicly.
Despite significant progress of applying deep learning methods to the field of content-based image retrieval, there has not been a software library that covers these methods in a unified manner. In order to fill this gap, we introduce PyRetri, an ope n source library for deep learning based unsupervised image retrieval. The library encapsulates the retrieval process in several stages and provides functionality that covers various prominent methods for each stage. The idea underlying its design is to provide a unified platform for deep learning based image retrieval research, with high usability and extensibility. To the best of our knowledge, this is the first open-source library for unsupervised image retrieval by deep learning.
In this paper, we investigate the cross-media retrieval between images and text, i.e., using image to search text (I2T) and using text to search images (T2I). Existing cross-media retrieval methods usually learn one couple of projections, by which th e original features of images and text can be projected into a common latent space to measure the content similarity. However, using the same projections for the two different retrieval tasks (I2T and T2I) may lead to a tradeoff between their respective performances, rather than their best performances. Different from previous works, we propose a modality-dependent cross-media retrieval (MDCR) model, where two couples of projections are learned for different cross-media retrieval tasks instead of one couple of projections. Specifically, by jointly optimizing the correlation between images and text and the linear regression from one modal space (image or text) to the semantic space, two couples of mappings are learned to project images and text from their original feature spaces into two common latent subspaces (one for I2T and the other for T2I). Extensive experiments show the superiority of the proposed MDCR compared with other methods. In particular, based the 4,096 dimensional convolutional neural network (CNN) visual feature and 100 dimensional LDA textual feature, the mAP of the proposed method achieves 41.5%, which is a new state-of-the-art performance on the Wikipedia dataset.
Feature fusion is a commonly used strategy in image retrieval tasks, which aggregates the matching responses of multiple visual features. Feasible sets of features can be either descriptors (SIFT, HSV) for an entire image or the same descriptor for d ifferent local parts (face, body). Ideally, the to-be-fused heterogeneous features are pre-assumed to be discriminative and complementary to each other. However, the effectiveness of different features varies dramatically according to different queries. That is to say, for some queries, a feature may be neither discriminative nor complementary to existing ones, while for other queries, the feature suffices. As a result, it is important to estimate the effectiveness of features in a query-adaptive manner. To this end, this article proposes a new late fusion scheme at the score level. We base our method on the observation that the sorted score curves contain patterns that describe their effectiveness. For example, an L-shaped curve indicates that the feature is discriminative while a gradually descending curve suggests a bad feature. As such, this paper introduces a query-adaptive late fusion pipeline. In the hand-crafted version, it can be an unsupervised approach to tasks like particular object retrieval. In the learning version, it can also be applied to supervised tasks like person recognition and pedestrian retrieval, based on a trainable neural module. Extensive experiments are conducted on two object retrieval datasets and one person recognition dataset. We show that our method is able to highlight the good features and suppress the bad ones, is resilient to distractor features, and achieves very competitive retrieval accuracy compared with the state of the art. In an additional person re-identification dataset, the application scope and limitation of the proposed method are studied.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا