ترغب بنشر مسار تعليمي؟ اضغط هنا

Query Adaptive Late Fusion for Image Retrieval

88   0   0.0 ( 0 )
 نشر من قبل Zhongdao Wang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Feature fusion is a commonly used strategy in image retrieval tasks, which aggregates the matching responses of multiple visual features. Feasible sets of features can be either descriptors (SIFT, HSV) for an entire image or the same descriptor for different local parts (face, body). Ideally, the to-be-fused heterogeneous features are pre-assumed to be discriminative and complementary to each other. However, the effectiveness of different features varies dramatically according to different queries. That is to say, for some queries, a feature may be neither discriminative nor complementary to existing ones, while for other queries, the feature suffices. As a result, it is important to estimate the effectiveness of features in a query-adaptive manner. To this end, this article proposes a new late fusion scheme at the score level. We base our method on the observation that the sorted score curves contain patterns that describe their effectiveness. For example, an L-shaped curve indicates that the feature is discriminative while a gradually descending curve suggests a bad feature. As such, this paper introduces a query-adaptive late fusion pipeline. In the hand-crafted version, it can be an unsupervised approach to tasks like particular object retrieval. In the learning version, it can also be applied to supervised tasks like person recognition and pedestrian retrieval, based on a trainable neural module. Extensive experiments are conducted on two object retrieval datasets and one person recognition dataset. We show that our method is able to highlight the good features and suppress the bad ones, is resilient to distractor features, and achieves very competitive retrieval accuracy compared with the state of the art. In an additional person re-identification dataset, the application scope and limitation of the proposed method are studied.

قيم البحث

اقرأ أيضاً

The Transformer-Kernel (TK) model has demonstrated strong reranking performance on the TREC Deep Learning benchmark---and can be considered to be an efficient (but slightly less effective) alternative to BERT-based ranking models. In this work, we ex tend the TK architecture to the full retrieval setting by incorporating the query term independence assumption. Furthermore, to reduce the memory complexity of the Transformer layers with respect to the input sequence length, we propose a new Conformer layer. We show that the Conformers GPU memory requirement scales linearly with input sequence length, making it a more viable option when ranking long documents. Finally, we demonstrate that incorporating explicit term matching signal into the model can be particularly useful in the full retrieval setting. We present preliminary results from our work in this paper.
Despite significant progress of applying deep learning methods to the field of content-based image retrieval, there has not been a software library that covers these methods in a unified manner. In order to fill this gap, we introduce PyRetri, an ope n source library for deep learning based unsupervised image retrieval. The library encapsulates the retrieval process in several stages and provides functionality that covers various prominent methods for each stage. The idea underlying its design is to provide a unified platform for deep learning based image retrieval research, with high usability and extensibility. To the best of our knowledge, this is the first open-source library for unsupervised image retrieval by deep learning.
Recent advances in dense retrieval techniques have offered the promise of being able not just to re-rank documents using contextualised language models such as BERT, but also to use such models to identify documents from the collection in the first p lace. However, when using dense retrieval approaches that use multiple embedded representations for each query, a large number of documents can be retrieved for each query, hindering the efficiency of the method. Hence, this work is the first to consider efficiency improvements in the context of a dense retrieval approach (namely ColBERT), by pruning query term embeddings that are estimated not to be useful for retrieving relevant documents. Our proposed query embeddings pruning reduces the cost of the dense retrieval operation, as well as reducing the number of documents that are retrieved and hence require to be fully scored. Experiments conducted on the MSMARCO passage ranking corpus demonstrate that, when reducing the number of query embeddings used from 32 to 3 based on the collection frequency of the corresponding tokens, query embedding pruning results in no statistically significant differences in effectiveness, while reducing the number of documents retrieved by 70%. In terms of mean response time for the end-to-end to end system, this results in a 2.65x speedup.
Image retrieval based on deep convolutional features has demonstrated state-of-the-art performance in popular benchmarks. In this paper, we present a unified solution to address deep convolutional feature aggregation and image re-ranking by simulatin g the dynamics of heat diffusion. A distinctive problem in image retrieval is that repetitive or emph{bursty} features tend to dominate final image representations, resulting in representations less distinguishable. We show that by considering each deep feature as a heat source, our unsupervised aggregation method is able to avoid over-representation of emph{bursty} features. We additionally provide a practical solution for the proposed aggregation method and further show the efficiency of our method in experimental evaluation. Inspired by the aforementioned deep feature aggregation method, we also propose a method to re-rank a number of top ranked images for a given query image by considering the query as the heat source. Finally, we extensively evaluate the proposed approach with pre-trained and fine-tuned deep networks on common public benchmarks and show superior performance compared to previous work.
139 - Lei Zhu , Hui Cui , Zhiyong Cheng 2020
Social network stores and disseminates a tremendous amount of user shared images. Deep hashing is an efficient indexing technique to support large-scale social image retrieval, due to its deep representation capability, fast retrieval speed and low s torage cost. Particularly, unsupervised deep hashing has well scalability as it does not require any manually labelled data for training. However, owing to the lacking of label guidance, existing methods suffer from severe semantic shortage when optimizing a large amount of deep neural network parameters. Differently, in this paper, we propose a Dual-level Semantic Transfer Deep Hashing (DSTDH) method to alleviate this problem with a unified deep hash learning framework. Our model targets at learning the semantically enhanced deep hash codes by specially exploiting the user-generated tags associated with the social images. Specifically, we design a complementary dual-level semantic transfer mechanism to efficiently discover the potential semantics of tags and seamlessly transfer them into binary hash codes. On the one hand, instance-level semantics are directly preserved into hash codes from the associated tags with adverse noise removing. Besides, an image-concept hypergraph is constructed for indirectly transferring the latent high-order semantic correlations of images and tags into hash codes. Moreover, the hash codes are obtained simultaneously with the deep representation learning by the discrete hash optimization strategy. Extensive experiments on two public social image retrieval datasets validate the superior performance of our method compared with state-of-the-art hashing methods. The source codes of our method can be obtained at https://github.com/research2020-1/DSTDH

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا