ﻻ يوجد ملخص باللغة العربية
The concept of orbifolds should unify differential geometry with equivariant homotopy theory, so that orbifold cohomology should unify differential cohomology with proper equivariant cohomology theory. Despite the prominent role that orbifolds have come to play in mathematics and mathematical physics, especially in string theory, the formulation of a general theory of orbifolds reflecting this unification has remained an open problem. Here we present a natural theory argued to achieve this. We give both a general abstract axiomatization in higher topos theory, as well as concrete models for ordinary as well as for super-geometric and for higher-geometric orbifolds. Our first main result is a fully faithful embedding of the 2-category of orbifolds into a singular-cohesive infinity-topos whose intrinsic cohomology theory is proper globally equivariant differential generalized cohomology, subsuming traditional orbifold cohomology, Chen-Ruan cohomology, and orbifold K-theory. Our second main result is a general construction of orbifold etale cohomology which we show to naturally unify (i) tangentially twisted cohomology of smooth but curved spaces with (ii) RO-graded proper equivariant cohomology of flat but singular spaces. As a fundamental example we present J-twisted orbifold Cohomotopy theories with coefficients in shapes of generalized Tate spheres. According to Hypothesis H this includes the proper orbifold cohomology theory that controls non-perturbative string theory.
In this paper we study the cohomology of (strict) Lie 2-groups. We obtain an explicit Bott-Shulman type map in the case of a Lie 2-group corresponding to the crossed module $Ato 1$. The cohomology of the Lie 2-groups corresponding to the universal cr
We extend the Chern character on K-theory, in its generalization to the Chern-Dold character on generalized cohomology theories, further to (twisted, differential) non-abelian cohomology theories, where its target is a non-abelian de Rham cohomology
Atiyahs classical work on circular symmetry and stationary phase shows how the $hat{A}$-genus is obtained by formally applying the equivariant cohomology localization formula to the loop space of a simply connected spin manifold. The same technique,
We construct a global geometric model for complex analytic equivariant elliptic cohomology for all compact Lie groups. Cocycles are specified by functions on the space of fields of the two-dimensional sigma model with background gauge fields and $mat
We show that the exterior derivative operator on a symplectic manifold has a natural decomposition into two linear differential operators, analogous to the Dolbeault operators in complex geometry. These operators map primitive forms into primitive fo