ﻻ يوجد ملخص باللغة العربية
In this paper we study the cohomology of (strict) Lie 2-groups. We obtain an explicit Bott-Shulman type map in the case of a Lie 2-group corresponding to the crossed module $Ato 1$. The cohomology of the Lie 2-groups corresponding to the universal crossed modules $Gto Aut(G)$ and $Gto Aut^+(G)$ is the abutment of a spectral sequence involving the cohomology of $GL(n,Z)$ and $SL(n,Z)$. When the dimension of the center of $G$ is less than 3, we compute explicitly these cohomology groups. We also compute the cohomology of the Lie 2-group corresponding to a crossed module $Gto H$ whose kernel is compact and cokernel is connected, simply connected and compact and apply the result to the string 2-group.
The concept of orbifolds should unify differential geometry with equivariant homotopy theory, so that orbifold cohomology should unify differential cohomology with proper equivariant cohomology theory. Despite the prominent role that orbifolds have c
We determine the mod $2$ cohomology over the Steenrod algebra of the classifying spaces of the free loop groups $LG$ for compact groups $G=Spin(7)$, $Spin(8)$, $Spin(9)$, and $F_4$. Then, we show that they are isomorphic as algebras over the Steenrod
Given a Lie group $G$ with finitely many components and a compact Lie group A which acts on $G$ by automorphisms, we prove that there always exists an A-invariant maximal compact subgroup K of G, and that for every such K, the natural map $H^1(A,K)to
For n>2, we prove the mod 2 cohomology of the finite Chevalley group Spin_n(F_q) is isomorphic to that of the classifying space of the loop group of the spin group Spin(n).
We show that the mod $ell$ cohomology of any finite group of Lie type in characteristic $p$ different from $ell$ admits the structure of a module over the mod $ell$ cohomology of the free loop space of the classifying space $BG$ of the corresponding