ﻻ يوجد ملخص باللغة العربية
Kibble-Zurek mechanism (KZM) is a universal framework which could in principle describe phase transition phenomenon in any system with required symmetry properties. However, a conflicting observation termed anti-KZ behavior has been reported in the study of ferroelectric phase transition, in which slower driving results in more topological defects [S. M. Griffin, et al. Phys. Rev. X. 2, 041022 (2012)]. Although this research is significant, its experimental simulations have been scarce until now. In this work, we experimentally demonstrate anti-KZ behavior under noisy control field in three kinds of quantum phase transition protocols using a single trapped Yb ion. The density of defects is studied as a function of the quench time and the noise intensity. We experimentally verify that the optimal quench time to minimize excitation scales as a universal power law of the noise intensity. Our research sets a stage for quantum simulation of such anti-KZ behavior in two-level systems and reveals the limitations of the adiabatic protocols such as quantum annealing.
We investigate the quench dynamics of an open quantum system involving a quantum phase transition. In the isolated case, the quench dynamics involving the phase transition exhibits a number of scaling relations with the quench rate as predicted by th
Even though no local order parameter in the sense of the Landau theory exists for topological quantum phase transitions in Chern insulators, the highly non-local Berry curvature exhibits critical behavior near a quantum critical point. We investigate
Geometric quantum speed limits quantify the trade-off between the rate with which quantum states can change and the resources that are expended during the evolution. Counterdiabatic driving is a unique tool from shortcuts to adiabaticity to speed up
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations. These fluctuations play a dominant role in the quantum critical region surrounding the transition point, where the dy
The Kibble-Zurek mechanism (KZM) captures the key physics in the non-equilibrium dynamics of second-order phase transitions, and accurately predict the density of the topological defects formed in this process. However, despite much effort, the verac