ﻻ يوجد ملخص باللغة العربية
The Kibble-Zurek mechanism (KZM) captures the key physics in the non-equilibrium dynamics of second-order phase transitions, and accurately predict the density of the topological defects formed in this process. However, despite much effort, the veracity of the central prediction of KZM, i.e., the scaling of the density production and the transit rate, is still an open question. Here, we performed an experiment, based on a nine-stage optical interferometer with an overall fidelity up to 0.975$pm$0.008, that directly supports the central prediction of KZM in quantum non-equilibrium dynamics. In addition, our work has significantly upgraded the number of stages of the optical interferometer to nine with a high fidelity, this technique can also help to push forward the linear optical quantum simulation and computation.
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations. These fluctuations play a dominant role in the quantum critical region surrounding the transition point, where the dy
The Kibble-Zurek mechanism constitutes one of the most fascinating and universal phenomena in the physics of critical systems. It describes the formation of domains and the spontaneous nucleation of topological defects when a system is driven across
The number of topological defects created in a system driven through a quantum phase transition exhibits a power-law scaling with the driving time. This universal scaling law is the key prediction of the Kibble-Zurek mechanism (KZM), and testing it u
In this paper, we study the dynamics of the Bose-Hubbard model by using time-dependent Gutzwiller methods. In particular, we vary the parameters in the Hamiltonian as a function of time, and investigate the temporal behavior of the system from the Mo
The Kibble-Zurek mechanism (KZM) is generalized to a class of multi-level systems and applied to study the quenching dynamics of one-dimensional (1D) topological superconductors (TS) with open ends. Unlike the periodic boundary condition, the open bo