ﻻ يوجد ملخص باللغة العربية
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations. These fluctuations play a dominant role in the quantum critical region surrounding the transition point, where the dynamics are governed by the universal properties associated with the QPT. While time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early universe to Bose Einstein Condensates, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems is an outstanding challenge. Here, we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations while crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM) for an Ising-type QPT, explore scaling universality, and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models, providing new insights into exotic systems that have not been understood previously, and opening the door for precision studies of critical phenomena, simulations of lattice gauge theories and applications to quantum optimization.
Quantum spin liquids, exotic phases of matter with topological order, have been a major focus of explorations in physical science for the past several decades. Such phases feature long-range quantum entanglement that can potentially be exploited to r
Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing, a broad effort is currently underway to build large-scale programmable quantum systems. Such syst
Quantum simulation using synthetic systems is a promising route to solve outstanding quantum many-body problems in regimes where other approaches, including numerical ones, fail. Many platforms are being developed towards this goal, in particular bas
Confinement is a ubiquitous mechanism in nature, whereby particles feel an attractive force that increases without bound as they separate. A prominent example is color confinement in particle physics, in which baryons and mesons are produced by quark
The Kibble-Zurek mechanism (KZM) captures the key physics in the non-equilibrium dynamics of second-order phase transitions, and accurately predict the density of the topological defects formed in this process. However, despite much effort, the verac