ﻻ يوجد ملخص باللغة العربية
A novel method for extracting threshold voltage and substrate effect parameters of MOSFETs with constant current bias at all levels of inversion is presented. This generalized constant-current (GCC) method exploits the charge-based model of MOSFETs to extract threshold voltage and other substrate-effect related parameters. The method is applicable over a wide range of current throughout weak and moderate inversion and to some extent in strong inversion. This method is particularly useful when applied for MOSFETs presenting edge conduction effect (subthreshold hump) in CMOS processes using Shallow Trench Isolation (STI).
This paper presents a physics-based model for the threshold voltage in bulk MOSFETs valid from room down to cryogenic temperature (4.2 K). The proposed model is derived from Poissons equation including bandgap widening, intrinsic carrier-density scal
A gate voltage application in a Si-based spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) modulates spin accumulation voltages, where both electrical conductivity and drift velocity are modified while keeping constant electric cur
We compute the current voltage characteristic of a chain of identical Josephson circuits characterized by a large ratio of Josephson to charging energy that are envisioned as the implementation of topologically protected qubits. We show that in the l
We report measurements of transfer functions and flux shifts of 20 on-chip high T$_C$ DC SQUIDs half of which were made purposely geometrically asymmetric. All of these SQUIDs were fabricated using standard high T$_C$ thin film technology and they we
In this letter, we present a study of optimized TMR magnetic field sensors as a function of voltage bias. The 1/f low-frequency noise is quantified by the Hooge-like parameter {alpha} which allows to compare the low-frequency behavior of various TMR