ﻻ يوجد ملخص باللغة العربية
In this letter, we present a study of optimized TMR magnetic field sensors as a function of voltage bias. The 1/f low-frequency noise is quantified by the Hooge-like parameter {alpha} which allows to compare the low-frequency behavior of various TMR sensors. The sensitivity as well as the detectivity of the sensor are characterized in the parallel state and at 0 mT. We observe that the sensitivity shows a strong voltage dependence and the noise presents an unexpected decrease, not anticipated by the Hooges law. Moreover, surprisingly, an almost stable detectivity (140-200 nT/sqrt(Hz) at 10 Hz and 15-20 nT/sqrt(Hz) at 1 kHz) as a function of the bias voltage is observed, tending to highlight that the variation of sensitivity and noise are correlated. Even if the I-V curves are strongly non-linear and reflect the different symmetries of the conduction bands channels, the variations in sensitivity and noise seems to depend mainly on the distortion of the MgO barrier due to bias voltage. With a simple model where the normal noise and sensitivity of the TMR sensors are modified by an element having no noise and a parabolic conductance with voltage, we describe the behavior of noise and sensitivity from mV to V.
We report on the noise performance characteristics of magnetic sensors using both magnetic tunnel junction (MTJ) and giant magnetoresistance (GMR) elements. Each sensor studied has a notably different noise and detectivity. Of the sensors we measured
A novel method for extracting threshold voltage and substrate effect parameters of MOSFETs with constant current bias at all levels of inversion is presented. This generalized constant-current (GCC) method exploits the charge-based model of MOSFETs t
Perpendicular magnetic tunnel junctions (p-MTJs) switched utilizing bipolar electric fields have extensive applications in energy-efficient memory and logic devices. Voltage-controlled magnetic anisotropy linearly lowers the energy barrier of ferroma
Voltage-induced ferromagnetic resonance (V-FMR) in magnetic tunnel junctions (MTJs) with a W buffer is investigated. Perpendicular magnetic anisotropy (PMA) energy is controlled by both thickness of a CoFeB free layer deposited directly on the W buff
Voltage-induced magnetization dynamics in a conically magnetized free layer with an elliptic cylinder shape is theoretically studied on the basis of the macrospin model. It is found that an application of voltage pulse can induce the precessional swi