ﻻ يوجد ملخص باللغة العربية
A gate voltage application in a Si-based spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) modulates spin accumulation voltages, where both electrical conductivity and drift velocity are modified while keeping constant electric current. An unprecedented reduction in the spin accumulation voltages in a Si spin MOSFET under negative gate voltage applications is observed in a high electric bias current regime. To support our claim, the electric bias current dependence of the spin accumulation voltage under the gate voltage applications is investigated in detail and compared to a spin drift diffusion model including the conductance mismatch effect. We proved that the drastic decrease of the mobility and spin lifetime in the Si channel is due to the optical phonon emission at the high electric bias current, which consequently reduced the spin accumulation voltage.
Spin transport in non-degenerate semiconductors is expected to pave a way to the creation of spin transistors, spin logic devices and reconfigurable logic circuits, because room temperature (RT) spin transport in Si has already been achieved. However
This paper presents a physics-based model for the threshold voltage in bulk MOSFETs valid from room down to cryogenic temperature (4.2 K). The proposed model is derived from Poissons equation including bandgap widening, intrinsic carrier-density scal
The temperature evolution of spin relaxation time, {tau}sf, in degenerate silicon (Si)-based lateral spin valves is investigated by means of the Hanle effect measurements. {tau}sf at 300 K is estimated to be 1.68+-0.03 ns and monotonically increased
Positive magnetoresistance (PMR) of a silicon MOSFET in parallel magnetic fields B has been measured at high electron densities n >> n_c where n_c is the critical density of the metal-insulator transition (MIT). It turns out that the normalized PMR c
A novel method for extracting threshold voltage and substrate effect parameters of MOSFETs with constant current bias at all levels of inversion is presented. This generalized constant-current (GCC) method exploits the charge-based model of MOSFETs t