ﻻ يوجد ملخص باللغة العربية
Functional principal component analysis (FPCA) has been widely used to capture major modes of variation and reduce dimensions in functional data analysis. However, standard FPCA based on the sample covariance estimator does not work well in the presence of outliers. To address this challenge, a new robust functional principal component analysis approach based on the functional pairwise spatial sign (PASS) operator, termed PASS FPCA, is introduced where we propose estimation procedures for both eigenfunctions and eigenvalues with and without measurement error. Compared to existing robust FPCA methods, the proposed one requires weaker distributional assumptions to conserve the eigenspace of the covariance function. In particular, a class of distributions called the weakly functional coordinate symmetric (weakly FCS) is introduced that allows for severe asymmetry and is strictly larger than the functional elliptical distribution class, the latter of which has been well used in the robust statistics literature. The robustness of the PASS FPCA is demonstrated via simulation studies and analyses of accelerometry data from a large-scale epidemiological study of physical activity on older women that partly motivates this work.
Functional principal component analysis is essential in functional data analysis, but the inferences will become unconvincing when some non-Gaussian characteristics occur, such as heavy tail and skewness. The focus of this paper is to develop a robus
We consider spatially dependent functional data collected under a geostatistics setting, where locations are sampled from a spatial point process. The functional response is the sum of a spatially dependent functional effect and a spatially independe
Functional principal component analysis (FPCA) could become invalid when data involve non-Gaussian features. Therefore, we aim to develop a general FPCA method to adapt to such non-Gaussian cases. A Kenalls $tau$ function, which possesses identical e
Functional binary datasets occur frequently in real practice, whereas discrete characteristics of the data can bring challenges to model estimation. In this paper, we propose a sparse logistic functional principal component analysis (SLFPCA) method t
Motivation: Although principal component analysis is frequently applied to reduce the dimensionality of matrix data, the method is sensitive to noise and bias and has difficulty with comparability and interpretation. These issues are addressed by imp