ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual fermion method as a prototype of generic reference-system approach for correlated fermions

81   0   0.0 ( 0 )
 نشر من قبل E. A. Stepanov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a purely diagrammatic derivation of the dual fermion scheme [Phys. Rev. B 77 (2008) 033101]. The derivation makes particularly clear that a similar scheme can be developed for an arbitrary reference system provided it has the same interaction term as the original system. Thereby no restrictions are imposed by the locality of the reference problem or by the nature of the original problem as a lattice one. We present new arguments in favour of keeping the dual denominator in the expression for the lattice self-energy independently of the truncation of the dual interaction. As an example we present the computational results for the half-filled 2D Hubbard model with the choice of a $2times2$ plaquette with periodic boundary conditions as a reference system. We observe that obtained results are in a good agreement with numerically exact lattice quantum Monte Carlo data.



قيم البحث

اقرأ أيضاً

In this paper, we show how the two-particle Green function (2PGF) can be obtained within the framework of the Dual Fermion approach. This facilitates the calculation of the susceptibility in strongly correlated systems where long-ranged non-local cor relations cannot be neglected. We formulate the Bethe-Salpeter equations for the full vertex in the particle-particle and particle-hole channels and introduce an approximation for practical calculations. The scheme is applied to the two-dimensional Hubbard model at half filling. The spin-spin susceptibility is found to strongly increase for the wavevector $vc{q}=(pi,pi)$, indicating the antiferromagnetic instability. We find a suppression of the critical temperature compared to the mean-field result due to the incorporation of the non-local spin-fluctuations.
124 - C. Jung , A. Lieder , S. Brener 2010
We present a generalization of the recently developed dual fermion approach introduced for correlated lattices to non-equilibrium problems. In its local limit, the approach has been used to devise an efficient impurity solver, the superperturbation s olver for the Anderson impurity model (AIM). Here we show that the general dual perturbation theory can be formulated on the Keldysh contour. Starting from a reference Hamiltonian system, in which the time-dependent solution is found by exact diagonalization, we make a dual perturbation expansion in order to account for the relaxation effects from the fermionic bath. Simple test results for closed as well as open quantum systems in a fermionic bath are presented.
To reduce the rapidly growing computational cost of the dual fermion lattice calculation with increasing system size, we introduce two embedding schemes. One is the real fermion embedding, and the other is the dual fermion embedding. Our numerical te sts show that the real fermion and dual fermion embedding approaches converge to essentially the same result. The application on the Anderson disorder and Hubbard models shows that these embedding algorithms converge more quickly with system size as compared to the conventional dual fermion method, for the calculation of both single-particle and two-particle quantities.
While the coherent potential approximation (CPA) is the prevalent method for the study of disordered electronic systems, it fails to capture non-local correlations and Anderson localization. To incorporate such effects, we extend the dual fermion app roach to disordered non-interacting systems using the replica method. Results for single- and two- particle quantities show good agreement with cluster extensions of the CPA; moreover, weak localization is captured. As a natural extension of the CPA, our method presents an alternative to the existing cluster theories. It can be used in various applications, including the study of disordered interacting systems, or for the description of non-local effects in electronic structure calculations.
We generalize the recently introduced dual fermion (DF) formalism for disordered fermion systems by including the effect of interactions. For an interacting disordered system the contributions to the full vertex function have to be separated into ela stic and inelastic scattering processes, and addressed differently when constructing the DF diagrams. By applying our approach to the Anderson-Falicov-Kimball model and systematically restoring the nonlocal correlations in the DF lattice calculation, we show a significant improvement over the Dynamical Mean-Field Theory and the Coherent Potential Approximation for both one-particle and two-particle quantities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا