ﻻ يوجد ملخص باللغة العربية
In this paper, we show how the two-particle Green function (2PGF) can be obtained within the framework of the Dual Fermion approach. This facilitates the calculation of the susceptibility in strongly correlated systems where long-ranged non-local correlations cannot be neglected. We formulate the Bethe-Salpeter equations for the full vertex in the particle-particle and particle-hole channels and introduce an approximation for practical calculations. The scheme is applied to the two-dimensional Hubbard model at half filling. The spin-spin susceptibility is found to strongly increase for the wavevector $vc{q}=(pi,pi)$, indicating the antiferromagnetic instability. We find a suppression of the critical temperature compared to the mean-field result due to the incorporation of the non-local spin-fluctuations.
We present a generalization of the recently developed dual fermion approach introduced for correlated lattices to non-equilibrium problems. In its local limit, the approach has been used to devise an efficient impurity solver, the superperturbation s
We present a purely diagrammatic derivation of the dual fermion scheme [Phys. Rev. B 77 (2008) 033101]. The derivation makes particularly clear that a similar scheme can be developed for an arbitrary reference system provided it has the same interact
We generalize the recently introduced dual fermion (DF) formalism for disordered fermion systems by including the effect of interactions. For an interacting disordered system the contributions to the full vertex function have to be separated into ela
To reduce the rapidly growing computational cost of the dual fermion lattice calculation with increasing system size, we introduce two embedding schemes. One is the real fermion embedding, and the other is the dual fermion embedding. Our numerical te
We apply the recently developed dual fermion algorithm for disordered interacting systems to the Anderson-Hubbard model. This algorithm is compared with dynamical cluster approximation calculations for a one-dimensional system to establish the qualit