ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-Driven Multi-step Demand Prediction for Ride-hailing Services Using Convolutional Neural Network

153   0   0.0 ( 0 )
 نشر من قبل Chao Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Ride-hailing services are growing rapidly and becoming one of the most disruptive technologies in the transportation realm. Accurate prediction of ride-hailing trip demand not only enables cities to better understand peoples activity patterns, but also helps ride-hailing companies and drivers make informed decisions to reduce deadheading vehicle miles traveled, traffic congestion, and energy consumption. In this study, a convolutional neural network (CNN)-based deep learning model is proposed for multi-step ride-hailing demand prediction using the trip request data in Chengdu, China, offered by DiDi Chuxing. The CNN model is capable of accurately predicting the ride-hailing pick-up demand at each 1-km by 1-km zone in the city of Chengdu for every 10 minutes. Compared with another deep learning model based on long short-term memory, the CNN model is 30% faster for the training and predicting process. The proposed model can also be easily extended to make multi-step predictions, which would benefit the on-demand shared autonomous vehicles applications and fleet operators in terms of supply-demand rebalancing. The prediction error attenuation analysis shows that the accuracy stays acceptable as the model predicts more steps.

قيم البحث

اقرأ أيضاً

Urban ride-hailing demand prediction is a crucial but challenging task for intelligent transportation system construction. Predictable ride-hailing demand can facilitate more reasonable vehicle scheduling and online car-hailing platform dispatch. Con ventional deep learning methods with no external structured data can be accomplished via hybrid models of CNNs and RNNs by meshing plentiful pixel-level labeled data, but spatial data sparsity and limited learning capabilities on temporal long-term dependencies are still two striking bottlenecks. To address these limitations, we propose a new virtual graph modeling method to focus on significant demand regions and a novel Deep Multi-View Spatiotemporal Virtual Graph Neural Network (DMVST-VGNN) to strengthen learning capabilities of spatial dynamics and temporal long-term dependencies. Specifically, DMVST-VGNN integrates the structures of 1D Convolutional Neural Network, Multi Graph Attention Neural Network and Transformer layer, which correspond to short-term temporal dynamics view, spatial dynamics view and long-term temporal dynamics view respectively. In this paper, experiments are conducted on two large-scale New York City datasets in fine-grained prediction scenes. And the experimental results demonstrate effectiveness and superiority of DMVST-VGNN framework in significant citywide ride-hailing demand prediction.
The rapid growth of ride-hailing platforms has created a highly competitive market where businesses struggle to make profits, demanding the need for better operational strategies. However, real-world experiments are risky and expensive for these plat forms as they deal with millions of users daily. Thus, a need arises for a simulated environment where they can predict users reactions to changes in the platform-specific parameters such as trip fares and incentives. Building such a simulation is challenging, as these platforms exist within dynamic environments where thousands of users regularly interact with one another. This paper presents a framework to mimic and predict user, specifically driver, behaviors in ride-hailing services. We use a data-driven hybrid reinforcement learning and imitation learning approach for this. First, the agent utilizes behavioral cloning to mimic driver behavior using a real-world data set. Next, reinforcement learning is applied on top of the pre-trained agents in a simulated environment, to allow them to adapt to changes in the platform. Our framework provides an ideal playground for ride-hailing platforms to experiment with platform-specific parameters to predict drivers behavioral patterns.
Ride-hailing demand prediction is an essential task in spatial-temporal data mining. Accurate Ride-hailing demand prediction can help to pre-allocate resources, improve vehicle utilization and user experiences. Graph Convolutional Networks (GCN) is c ommonly used to model the complicated irregular non-Euclidean spatial correlations. However, existing GCN-based ride-hailing demand prediction methods only assign the same importance to different neighbor regions, and maintain a fixed graph structure with static spatial relationships throughout the timeline when extracting the irregular non-Euclidean spatial correlations. In this paper, we propose the Spatial-Temporal Dynamic Graph Attention Network (STDGAT), a novel ride-hailing demand prediction method. Based on the attention mechanism of GAT, STDGAT extracts different pair-wise correlations to achieve the adaptive importance allocation for different neighbor regions. Moreover, in STDGAT, we design a novel time-specific commuting-based graph attention mode to construct a dynamic graph structure for capturing the dynamic time-specific spatial relationships throughout the timeline. Extensive experiments are conducted on a real-world ride-hailing demand dataset, and the experimental results demonstrate the significant improvement of our method on three evaluation metrics RMSE, MAPE and MAE over state-of-the-art baselines.
New forms of on-demand transportation such as ride-hailing and connected autonomous vehicles are proliferating, yet are a challenging use case for electric vehicles (EV). This paper explores the feasibility of using deep reinforcement learning (DRL) to optimize a driving and charging policy for a ride-hailing EV agent, with the goal of reducing costs and emissions while increasing transportation service provided. We introduce a data-driven simulation of a ride-hailing EV agent that provides transportation service and charges energy at congested charging infrastructure. We then formulate a test case for the sequential driving and charging decision making problem of the agent and apply DRL to optimize the agents decision making policy. We evaluate the performance against hand-written policies and show that our agent learns to act competitively without any prior knowledge.
Understanding individual mobility behavior is critical for modeling urban transportation. It provides deeper insights on the generative mechanisms of human movements. Emerging data sources such as mobile phone call detail records, social media posts, GPS observations, and smart card transactions have been used before to reveal individual mobility behavior. In this paper, we report the spatio-temporal mobility behaviors using large-scale data collected from a ride-hailing service platform. Based on passenger-level travel information, we develop an algorithm to identify users visited places and the category of those places. To characterize temporal movement patterns, we reveal the differences in trip generation characteristics between commuting and non-commuting trips and the distribution of gap time between consecutive trips. To understand spatial mobility patterns, we observe the distribution of the number of visited places and their rank, the spatial distribution of residences and workplaces, and the distributions of travel distance and travel time. Our analysis highlights the differences in mobility patterns of the users of ride-hailing services, compared to the findings of existing mobility studies based on other data sources. It shows the potential of developing high-resolution individual-level mobility models that can predict the demand of emerging mobility services with high fidelity and accuracy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا