ترغب بنشر مسار تعليمي؟ اضغط هنا

Accelerating Federated Learning over Reliability-Agnostic Clients in Mobile Edge Computing Systems

149   0   0.0 ( 0 )
 نشر من قبل Wentai Wu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Mobile Edge Computing (MEC), which incorporates the Cloud, edge nodes and end devices, has shown great potential in bringing data processing closer to the data sources. Meanwhile, Federated learning (FL) has emerged as a promising privacy-preserving approach to facilitating AI applications. However, it remains a big challenge to optimize the efficiency and effectiveness of FL when it is integrated with the MEC architecture. Moreover, the unreliable nature (e.g., stragglers and intermittent drop-out) of end devices significantly slows down the FL process and affects the global models quality Xin such circumstances. In this paper, a multi-layer federated learning protocol called HybridFL is designed for the MEC architecture. HybridFL adopts two levels (the edge level and the cloud level) of model aggregation enacting different aggregation strategies. Moreover, in order to mitigate stragglers and end device drop-out, we introduce regional slack factors into the stage of client selection performed at the edge nodes using a probabilistic approach without identifying or probing the state of end devices (whose reliability is agnostic). We demonstrate the effectiveness of our method in modulating the proportion of clients selected and present the convergence analysis for our protocol. We have conducted extensive experiments with machine learning tasks in different scales of MEC system. The results show that HybridFL improves the FL training process significantly in terms of shortening the federated round length, speeding up the global models convergence (by up to 12X) and reducing end device energy consumption (by up to 58%).



قيم البحث

اقرأ أيضاً

Federated Learning (FL) is an exciting new paradigm that enables training a global model from data generated locally at the client nodes, without moving client data to a centralized server. Performance of FL in a multi-access edge computing (MEC) net work suffers from slow convergence due to heterogeneity and stochastic fluctuations in compute power and communication link qualities across clients. A recent work, Coded Federated Learning (CFL), proposes to mitigate stragglers and speed up training for linear regression tasks by assigning redundant computations at the MEC server. Coding redundancy in CFL is computed by exploiting statistical properties of compute and communication delays. We develop CodedFedL that addresses the difficult task of extending CFL to distributed non-linear regression and classification problems with multioutput labels. The key innovation of our work is to exploit distributed kernel embedding using random Fourier features that transforms the training task into distributed linear regression. We provide an analytical solution for load allocation, and demonstrate significant performance gains for CodedFedL through experiments over benchmark datasets using practical network parameters.
Recently, along with the rapid development of mobile communication technology, edge computing theory and techniques have been attracting more and more attentions from global researchers and engineers, which can significantly bridge the capacity of cl oud and requirement of devices by the network edges, and thus can accelerate the content deliveries and improve the quality of mobile services. In order to bring more intelligence to the edge systems, compared to traditional optimization methodology, and driven by the current deep learning techniques, we propose to integrate the Deep Reinforcement Learning techniques and Federated Learning framework with the mobile edge systems, for optimizing the mobile edge computing, caching and communication. And thus, we design the In-Edge AI framework in order to intelligently utilize the collaboration among devices and edge nodes to exchange the learning parameters for a better training and inference of the models, and thus to carry out dynamic system-level optimization and application-level enhancement while reducing the unnecessary system communication load. In-Edge AI is evaluated and proved to have near-optimal performance but relatively low overhead of learning, while the system is cognitive and adaptive to the mobile communication systems. Finally, we discuss several related challenges and opportunities for unveiling a promising upcoming future of In-Edge AI.
We investigate a cooperative federated learning framework among devices for mobile edge computing, named CFLMEC, where devices co-exist in a shared spectrum with interference. Keeping in view the time-average network throughput of cooperative federat ed learning framework and spectrum scarcity, we focus on maximize the admission data to the edge server or the near devices, which fills the gap of communication resource allocation for devices with federated learning. In CFLMEC, devices can transmit local models to the corresponding devices or the edge server in a relay race manner, and we use a decomposition approach to solve the resource optimization problem by considering maximum data rate on sub-channel, channel reuse and wireless resource allocation in which establishes a primal-dual learning framework and batch gradient decent to learn the dynamic network with outdated information and predict the sub-channel condition. With aim at maximizing throughput of devices, we propose communication resource allocation algorithms with and without sufficient sub-channels for strong reliance on edge servers (SRs) in cellular link, and interference aware communication resource allocation algorithm for less reliance on edge servers (LRs) in D2D link. Extensive simulation results demonstrate the CFLMEC can achieve the highest throughput of local devices comparing with existing works, meanwhile limiting the number of the sub-channels.
We study federated edge learning (FEEL), where wireless edge devices, each with its own dataset, learn a global model collaboratively with the help of a wireless access point acting as the parameter server (PS). At each iteration, wireless devices pe rform local updates using their local data and the most recent global model received from the PS, and send their local updates to the PS over a wireless fading multiple access channel (MAC). The PS then updates the global model according to the signal received over the wireless MAC, and shares it with the devices. Motivated by the additive nature of the wireless MAC, we propose an analog `over-the-air aggregation scheme, in which the devices transmit their local updates in an uncoded fashion. Unlike recent literature on over-the-air edge learning, here we assume that the devices do not have channel state information (CSI), while the PS has imperfect CSI. Instead, the PS is equipped multiple antennas to alleviate the destructive effect of the channel, exacerbated due to the lack of perfect CSI. We design a receive beamforming scheme at the PS, and show that it can compensate for the lack of perfect CSI when the PS has a sufficient number of antennas. We also derive the convergence rate of the proposed algorithm highlighting the impact of the lack of perfect CSI, as well as the number of PS antennas. Both the experimental results and the convergence analysis illustrate the performance improvement of the proposed algorithm with the number of PS antennas, where the wireless fading MAC becomes deterministic despite the lack of perfect CSI when the PS has a sufficiently large number of antennas.
Predictive analytics in Mobile Edge Computing (MEC) based Internet of Things (IoT) is becoming a high demand in many real-world applications. A prediction problem in an MEC-based IoT environment typically corresponds to a collection of tasks with eac h task solved in a specific MEC environment based on the data accumulated locally, which can be regarded as a Multi-task Learning (MTL) problem. However, the heterogeneity of the data (non-IIDness) accumulated across different MEC environments challenges the application of general MTL techniques in such a setting. Federated MTL (FMTL) has recently emerged as an attempt to address this issue. Besides FMTL, there exists another powerful but under-exploited distributed machine learning technique, called Network Lasso (NL), which is inherently related to FMTL but has its own unique features. In this paper, we made an in-depth evaluation and comparison of these two techniques on three distinct IoT datasets representing real-world application scenarios. Experimental results revealed that NL outperformed FMTL in MEC-based IoT environments in terms of both accuracy and computational efficiency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا