ﻻ يوجد ملخص باللغة العربية
We study the problem of estimating the edit distance between two $n$-character strings. While exact computation in the worst case is believed to require near-quadratic time, previous work showed that in certain regimes it is possible to solve the following {em gap edit distance} problem in sub-linear time: distinguish between inputs of distance $le k$ and $>k^2$. Our main result is a very simple algorithm for this benchmark that runs in time $tilde O(n/sqrt{k})$, and in particular settles the open problem of obtaining a truly sublinear time for the entire range of relevant $k$. Building on the same framework, we also obtain a $k$-vs-$k^2$ algorithm for the one-sided preprocessing model with $tilde O(n)$ preprocessing time and $tilde O(n/k)$ query time (improving over a recent $tilde O(n/k+k^2)$-query time algorithm for the same problem [GRS20].
In the subgraph counting problem, we are given a input graph $G(V, E)$ and a target graph $H$; the goal is to estimate the number of occurrences of $H$ in $G$. Our focus here is on designing sublinear-time algorithms for approximately counting occurr
Computing efficiently a robust measure of similarity or dissimilarity between graphs is a major challenge in Pattern Recognition. The Graph Edit Distance (GED) is a flexible measure of dissimilarity between graphs which arises in error-tolerant graph
Approximating the length of the longest increasing sequence (LIS) of an array is a well-studied problem. We study this problem in the data stream model, where the algorithm is allowed to make a single left-to-right pass through the array and the key
In this article, we devise a concise algorithm for computing BOCP. Our method is simple, easy-to-implement but without loss of efficiency. Given two circular-arc polygons with $m$ and $n$ edges respectively, our method runs in $O(m+n+(l+k)log l)$ tim
We show a deterministic algorithm for computing edge connectivity of a simple graph with $m$ edges in $m^{1+o(1)}$ time. Although the fastest deterministic algorithm by Henzinger, Rao, and Wang [SODA17] has a faster running time of $O(mlog^{2}mloglog