ﻻ يوجد ملخص باللغة العربية
Approximating the length of the longest increasing sequence (LIS) of an array is a well-studied problem. We study this problem in the data stream model, where the algorithm is allowed to make a single left-to-right pass through the array and the key resource to be minimized is the amount of additional memory used. We present an algorithm which, for any $delta > 0$, given streaming access to an array of length $n$ provides a $(1+delta)$-multiplicative approximation to the emph{distance to monotonicity} ($n$ minus the length of the LIS), and uses only $O((log^2 n)/delta)$ space. The previous best known approximation using polylogarithmic space was a multiplicative 2-factor. Our algorithm can be used to estimate the length of the LIS to within an additive $delta n$ for any $delta >0$ while previous algorithms could only achieve additive error $n(1/2-o(1))$. Our algorithm is very simple, being just 3 lines of pseudocode, and has a small update time. It is essentially a polylogarithmic space approximate implementation of a classic dynamic program that computes the LIS. We also give a streaming algorithm for approximating $LCS(x,y)$, the length of the longest common subsequence between strings $x$ and $y$, each of length $n$. Our algorithm works in the asymmetric setting (inspired by cite{AKO10}), in which we have random access to $y$ and streaming access to $x$, and runs in small space provided that no single symbol appears very often in $y$. More precisely, it gives an additive-$delta n$ approximation to $LCS(x,y)$ (and hence also to $E(x,y) = n-LCS(x,y)$, the edit distance between $x$ and $y$ when insertions and deletions, but not substitutions, are allowed), with space complexity $O(k(log^2 n)/delta)$, where $k$ is the maximum number of times any one symbol appears in $y$.
In this paper, we study edit distance (ED) and longest common subsequence (LCS) in the asymmetric streaming model, introduced by Saks and Seshadhri [SS13]. As an intermediate model between the random access model and the streaming model, this model a
We study the problem of estimating the edit distance between two $n$-character strings. While exact computation in the worst case is believed to require near-quadratic time, previous work showed that in certain regimes it is possible to solve the fol
A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing t
Computing efficiently a robust measure of similarity or dissimilarity between graphs is a major challenge in Pattern Recognition. The Graph Edit Distance (GED) is a flexible measure of dissimilarity between graphs which arises in error-tolerant graph
We give cell-probe bounds for the computation of edit distance, Hamming distance, convolution and longest common subsequence in a stream. In this model, a fixed string of $n$ symbols is given and one $delta$-bit symbol arrives at a time in a stream.