ﻻ يوجد ملخص باللغة العربية
Comet P/2019 LD2 has orbital elements currently resembling those of a Jupiter Trojan, and therefore superficially appears to represent a unique opportunity to study the volatile content and active behavior of a member of this population for the first time. However, numerical integrations show that it was previously a Centaur before reaching its current Jupiter Trojan-like orbit in 2018 July, and is expected to return to being a Centaur in 2028 February, before eventually becoming a Jupiter-family comet in 2063 February. The case of P/2019 LD2 highlights the need for mechanisms to quickly and reliably dynamically classify small solar system bodies discovered in current and upcoming wide-field surveys.
The recently discovered object P/2019 LD2 (ATLAS) was initially thought to be a Jupiter Trojan asteroid, until dynamical studies and the appearance of persistent cometary activity revealed that this object is actually an active Centaur. However, the
Gateway Centaur and Jupiter co-orbital P/2019 LD2 (ATLAS) (Sarid et al. 2019) provides the first opportunity to observe the migration of a Solar System small body from a Centaur orbit to a Jupiter Family Comet (JFC) four decades from now (Kareta et a
We report observations of the Jupiter Trojan asteroid (3548) Eurybates and its satellite Queta with the Hubble Space Telescope and use these observations to perform an orbital fit to the system. Queta orbits Eurybates with a semimajor axis of $2350pm
We present visible and mid-infrared imagery and photometry of temporary Jovian co-orbital comet P/2019 LD$_2$ taken with HST/WFC3, Spitzer/IRAC, the GROWTH telescope network, visible spectroscopy from Keck/LRIS and archival ZTF observations taken bet
Jupiter co-orbital comets have orbits that are not long-term stable. They may experience flybys with Jupiter close enough to trigger tidal disruptions like the one suffered by comet Shoemaker-Levy 9. Our aim was to study the activity and dynamical ev