ﻻ يوجد ملخص باللغة العربية
We report observations of the Jupiter Trojan asteroid (3548) Eurybates and its satellite Queta with the Hubble Space Telescope and use these observations to perform an orbital fit to the system. Queta orbits Eurybates with a semimajor axis of $2350pm11$ km at a period of $82.46pm0.06$ days and an eccentricity of $0.125pm0.009$. From this orbit we derive a mass of Eurybates of $1.51pm0.03 times 10^{17}$ kg, corresponding to an estimated density of $1.1pm0.3$ g cm$^{-3}$, broadly consistent with densities measured for other Trojans, C-type asteroids in the outer main asteroid belt, and small icy objects from the Kuiper belt. Eurybates is the parent body of the only major collisional family among the Jupiter Trojans; its low density suggests that it is a typical member of the Trojan population. Detailed study of this system in 2027 with the Lucy spacecraft flyby should allow significant insight into collisional processes among what appear to be the icy bodies of the Trojan belt.
We describe the discovery of a satellite of the Trojan asteroid (3548) Eurybates in images obtained with the Hubble Space Telescope. The satellite was detected on three separate epochs, two in September 2018 and one in January 2020. The satellite has
Comet P/2019 LD2 has orbital elements currently resembling those of a Jupiter Trojan, and therefore superficially appears to represent a unique opportunity to study the volatile content and active behavior of a member of this population for the first
The Eurybates family is a compact core inside the Menelaus clan, located in the L4 swarm of Jupiter Trojans. Fornasier et al. (2007) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and
Aims. We investigate the influence of the Yarkovsky force on the long-term orbital evolution of Jupiter Trojan asteroids. Methods. Clones of the observed population with different sizes and different thermal properties were numerically integrated for
Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W.M. Keck adaptive optic