ﻻ يوجد ملخص باللغة العربية
Jupiter co-orbital comets have orbits that are not long-term stable. They may experience flybys with Jupiter close enough to trigger tidal disruptions like the one suffered by comet Shoemaker-Levy 9. Our aim was to study the activity and dynamical evolution of the Jupiter co-orbital comet P/2019 LD2 (ATLAS). We present results of an observational study carried out with the 10.4m Gran Telescopio Canarias (GTC) that includes image analyses using a MC dust tail fitting code to characterize its activity, and spectroscopic studies to search for gas emission. We also present N-body simulations to explore its orbital evolution. Images of LD2 obtained on 2020 May 16 show a conspicuous coma and tail. The spectrum does not exhibit any evidence of CN, C2, or C3 emission. The comet brightness in a 2.6 arcsec aperture is r=19.34+/-0.02 mag, with colors (g-r)=0.78+/-0.03, (r-i)=0.31+/-0.03, and (i-z)=0.26+/-0.03. The temporal dependence of the dust loss rate can be parameterized by a Gaussian having a FWHM of 350 days and a maximum of 60 kg/s reached on 2019 August 15. The total dust loss rate is 1.9e09 kg. LD2 is now following what looks like a short arc of a quasi-satellite cycle that started in 2017 and will end in 2028. On 2063 January 23, it will experience a very close encounter with Jupiter at 0.016 au. Its probability of escaping the solar system during the next 0.5 Myr is 0.53+/-0.03. LD2 is a kilometer-sized object, in the size range of the Jupiter-family comets, with a typical comet-like activity likely linked to sublimation of crystalline water ice and clathrates. Its origin is still an open question. We report a probability of LD2 having been captured from interstellar space during the last 0.5 Myr of 0.49+/-0.02, 0.67+/-0.06 during the last 1 Myr, 0.83+/-0.06 over 3 Myr, and 0.91+/-0.09 during the last 5 Myr.
In this work, we present the results of an observational study of 2I/Borisov carried out with the 10.4-m Gran Telescopio Canarias (GTC) and the 3.6-m Telescopio Nazionale Galileo (TNG), both telescopes located at the Roque de Los Muchachos Observator
Comet P/2019 LD2 has orbital elements currently resembling those of a Jupiter Trojan, and therefore superficially appears to represent a unique opportunity to study the volatile content and active behavior of a member of this population for the first
The recently discovered object P/2019 LD2 (ATLAS) was initially thought to be a Jupiter Trojan asteroid, until dynamical studies and the appearance of persistent cometary activity revealed that this object is actually an active Centaur. However, the
We present an analysis of the photometric and spectroscopic observations of the split comet C/2019 Y4 (ATLAS). Observations were carried out on the 14th and 16th of April 2020 when the heliocentric distances of the comet were 1.212 and 1.174 au, its
The spectra and images obtained through broadband BVR filters for Jupiter famaly comet P/2011 P1 were analyzed. We observed the comet on November 24, 2011, when its heliocentric distance was 5.43 AU. Two dimensional long slit spectra and photometric