ترغب بنشر مسار تعليمي؟ اضغط هنا

A Unified Framework of Surrogate Loss by Refactoring and Interpolation

67   0   0.0 ( 0 )
 نشر من قبل Lanlan Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce UniLoss, a unified framework to generate surrogate losses for training deep networks with gradient descent, reducing the amount of manual design of task-specific surrogate losses. Our key observation is that in many cases, evaluating a model with a performance metric on a batch of examples can be refactored into four steps: from input to real-valued scores, from scores to comparisons of pairs of scores, from comparisons to binary variables, and from binary variables to the final performance metric. Using this refactoring we generate differentiable approximations for each non-differentiable step through interpolation. Using UniLoss, we can optimize for different tasks and metrics using one unified framework, achieving comparable performance compared with task-specific losses. We validate the effectiveness of UniLoss on three tasks and four datasets. Code is available at https://github.com/princeton-vl/uniloss.



قيم البحث

اقرأ أيضاً

45 - Juncai He , Jinchao Xu 2019
We develop a unified model, known as MgNet, that simultaneously recovers some convolutional neural networks (CNN) for image classification and multigrid (MG) methods for solving discretized partial differential equations (PDEs). This model is based o n close connections that we have observed and uncovered between the CNN and MG methodologies. For example, pooling operation and feature extraction in CNN correspond directly to restriction operation and iterative smoothers in MG, respectively. As the solution space is often the dual of the data space in PDEs, the analogous concept of feature space and data space (which are dual to each other) is introduced in CNN. With such connections and new concept in the unified model, the function of various convolution operations and pooling used in CNN can be better understood. As a result, modified CNN models (with fewer weights and hyper parameters) are developed that exhibit competitive and sometimes better performance in comparison with existing CNN models when applied to both CIFAR-10 and CIFAR-100 data sets.
100 - Stephen Y. Zhang 2021
Non-negative matrix and tensor factorisations are a classical tool for finding low-dimensional representations of high-dimensional datasets. In applications such as imaging, datasets can be regarded as distributions supported on a space with metric s tructure. In such a setting, a loss function based on the Wasserstein distance of optimal transportation theory is a natural choice since it incorporates the underlying geometry of the data. We introduce a general mathematical framework for computing non-negative factorisations of both matrices and tensors with respect to an optimal transport loss. We derive an efficient computational method for its solution using a convex dual formulation, and demonstrate the applicability of this approach with several numerical illustrations with both matrix and tensor-valued data.
This paper provides a pair similarity optimization viewpoint on deep feature learning, aiming to maximize the within-class similarity $s_p$ and minimize the between-class similarity $s_n$. We find a majority of loss functions, including the triplet l oss and the softmax plus cross-entropy loss, embed $s_n$ and $s_p$ into similarity pairs and seek to reduce $(s_n-s_p)$. Such an optimization manner is inflexible, because the penalty strength on every single similarity score is restricted to be equal. Our intuition is that if a similarity score deviates far from the optimum, it should be emphasized. To this end, we simply re-weight each similarity to highlight the less-optimized similarity scores. It results in a Circle loss, which is named due to its circular decision boundary. The Circle loss has a unified formula for two elemental deep feature learning approaches, i.e. learning with class-level labels and pair-wise labels. Analytically, we show that the Circle loss offers a more flexible optimization approach towards a more definite convergence target, compared with the loss functions optimizing $(s_n-s_p)$. Experimentally, we demonstrate the superiority of the Circle loss on a variety of deep feature learning tasks. On face recognition, person re-identification, as well as several fine-grained image retrieval datasets, the achieved performance is on par with the state of the art.
Direct optimization, by gradient descent, of an evaluation metric, is not possible when it is non-differentiable, which is the case for recall in retrieval. In this work, a differentiable surrogate loss for the recall is proposed. Using an implementa tion that sidesteps the hardware constraints of the GPU memory, the method trains with a very large batch size, which is essential for metrics computed on the entire retrieval database. It is assisted by an efficient mixup approach that operates on pairwise scalar similarities and virtually increases the batch size further. When used for deep metric learning, the proposed method achieves state-of-the-art results in several image retrieval benchmarks. For instance-level recognition, the method outperforms similar approaches that train using an approximation of average precision. The implementation will be made public.
103 - Shai Bagon , Meirav Galun 2012
Discrete energy minimization is a ubiquitous task in computer vision, yet is NP-hard in most cases. In this work we propose a multiscale framework for coping with the NP-hardness of discrete optimization. Our approach utilizes algebraic multiscale pr inciples to efficiently explore the discrete solution space, yielding improved results on challenging, non-submodular energies for which current methods provide unsatisfactory approximations. In contrast to popular multiscale methods in computer vision, that builds an image pyramid, our framework acts directly on the energy to construct an energy pyramid. Deriving a multiscale scheme from the energy itself makes our framework application independent and widely applicable. Our framework gives rise to two complementary energy coarsening strategies: one in which coarser scales involve fewer variables, and a more revolutionary one in which the coarser scales involve fewer discrete labels. We empirically evaluated our unified framework on a variety of both non-submodular and submodular energies, including energies from Middlebury benchmark.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا