ترغب بنشر مسار تعليمي؟ اضغط هنا

Recall@k Surrogate Loss with Large Batches and Similarity Mixup

83   0   0.0 ( 0 )
 نشر من قبل Yash Patel
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Direct optimization, by gradient descent, of an evaluation metric, is not possible when it is non-differentiable, which is the case for recall in retrieval. In this work, a differentiable surrogate loss for the recall is proposed. Using an implementation that sidesteps the hardware constraints of the GPU memory, the method trains with a very large batch size, which is essential for metrics computed on the entire retrieval database. It is assisted by an efficient mixup approach that operates on pairwise scalar similarities and virtually increases the batch size further. When used for deep metric learning, the proposed method achieves state-of-the-art results in several image retrieval benchmarks. For instance-level recognition, the method outperforms similar approaches that train using an approximation of average precision. The implementation will be made public.



قيم البحث

اقرأ أيضاً

Class imbalance is a fundamental problem in computer vision applications such as semantic segmentation. Specifically, uneven class distributions in a training dataset often result in unsatisfactory performance on under-represented classes. Many works have proposed to weight the standard cross entropy loss function with pre-computed weights based on class statistics, such as the number of samples and class margins. There are two major drawbacks to these methods: 1) constantly up-weighting minority classes can introduce excessive false positives in semantic segmentation; 2) a minority class is not necessarily a hard class. The consequence is low precision due to excessive false positives. In this regard, we propose a hard-class mining loss by reshaping the vanilla cross entropy loss such that it weights the loss for each class dynamically based on instantaneous recall performance. We show that the novel recall loss changes gradually between the standard cross entropy loss and the inverse frequency weighted loss. Recall loss also leads to improved mean accuracy while offering competitive mean Intersection over Union (IoU) performance. On Synthia dataset, recall loss achieves 9% relative improvement on mean accuracy with competitive mean IoU using DeepLab-ResNet18 compared to the cross entropy loss. Code available at https://github.com/PotatoTian/recall-semseg.
We introduce UniLoss, a unified framework to generate surrogate losses for training deep networks with gradient descent, reducing the amount of manual design of task-specific surrogate losses. Our key observation is that in many cases, evaluating a m odel with a performance metric on a batch of examples can be refactored into four steps: from input to real-valued scores, from scores to comparisons of pairs of scores, from comparisons to binary variables, and from binary variables to the final performance metric. Using this refactoring we generate differentiable approximations for each non-differentiable step through interpolation. Using UniLoss, we can optimize for different tasks and metrics using one unified framework, achieving comparable performance compared with task-specific losses. We validate the effectiveness of UniLoss on three tasks and four datasets. Code is available at https://github.com/princeton-vl/uniloss.
101 - Shuai Zhao , Boxi Wu , Wenqing Chu 2019
Most semantic segmentation models treat semantic segmentation as a pixel-wise classification task and use a pixel-wise classification error as their optimization criterions. However, the pixel-wise error ignores the strong dependencies among the pixe ls in an image, which limits the performance of the model. Several ways to incorporate the structure information of the objects have been investigated, eg, conditional random fields (CRF), image structure priors based methods, and generative adversarial network (GAN). Nevertheless, these methods usually require extra model branches or additional memories, and some of them show limited improvements. In contrast, we propose a simple yet effective structural similarity loss (SSL) to encode the structure information of the objects, which only requires a few additional computational resources in the training phase. Inspired by the widely-used structural similarity (SSIM) index in image quality assessment, we use the linear correlation between two images to quantify their structural similarity. And the goal of the proposed SSL is to pay more attention to the positions, whose associated predictions lead to a low degree of linear correlation between two corresponding regions in the ground truth map and the predicted map. Thus the model can achieve a strong structural similarity between the two maps through minimizing the SSL over the whole map. The experimental results demonstrate that our method can achieve substantial and consistent improvements in performance on the PASCAL VOC 2012 and Cityscapes datasets. The code will be released soon.
Recent works on domain adaptation reveal the effectiveness of adversarial learning on filling the discrepancy between source and target domains. However, two common limitations exist in current adversarial-learning-based methods. First, samples from two domains alone are not sufficient to ensure domain-invariance at most part of latent space. Second, the domain discriminator involved in these methods can only judge real or fake with the guidance of hard label, while it is more reasonable to use soft scores to evaluate the generated images or features, i.e., to fully utilize the inter-domain information. In this paper, we present adversarial domain adaptation with domain mixup (DM-ADA), which guarantees domain-invariance in a more continuous latent space and guides the domain discriminator in judging samples difference relative to source and target domains. Domain mixup is jointly conducted on pixel and feature level to improve the robustness of models. Extensive experiments prove that the proposed approach can achieve superior performance on tasks with various degrees of domain shift and data complexity.
This paper provides a pair similarity optimization viewpoint on deep feature learning, aiming to maximize the within-class similarity $s_p$ and minimize the between-class similarity $s_n$. We find a majority of loss functions, including the triplet l oss and the softmax plus cross-entropy loss, embed $s_n$ and $s_p$ into similarity pairs and seek to reduce $(s_n-s_p)$. Such an optimization manner is inflexible, because the penalty strength on every single similarity score is restricted to be equal. Our intuition is that if a similarity score deviates far from the optimum, it should be emphasized. To this end, we simply re-weight each similarity to highlight the less-optimized similarity scores. It results in a Circle loss, which is named due to its circular decision boundary. The Circle loss has a unified formula for two elemental deep feature learning approaches, i.e. learning with class-level labels and pair-wise labels. Analytically, we show that the Circle loss offers a more flexible optimization approach towards a more definite convergence target, compared with the loss functions optimizing $(s_n-s_p)$. Experimentally, we demonstrate the superiority of the Circle loss on a variety of deep feature learning tasks. On face recognition, person re-identification, as well as several fine-grained image retrieval datasets, the achieved performance is on par with the state of the art.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا