ﻻ يوجد ملخص باللغة العربية
We present a novel analysis of the expected risk of weighted majority vote in multiclass classification. The analysis takes correlation of predictions by ensemble members into account and provides a bound that is amenable to efficient minimization, which yields improved weighting for the majority vote. We also provide a specialized version of our bound for binary classification, which allows to exploit additional unlabeled data for tighter risk estimation. In experiments, we apply the bound to improve weighting of trees in random forests and show that, in contrast to the commonly used first order bound, minimization of the new bound typically does not lead to degradation of the test error of the ensemble.
We present a new second-order oracle bound for the expected risk of a weighted majority vote. The bound is based on a novel parametric form of the Chebyshev-Cantelli inequality (a.k.a. one-sided Chebyshevs), which is amenable to efficient minimizatio
In this paper, we improve the PAC-Bayesian error bound for linear regression derived in Germain et al. [10]. The improvements are twofold. First, the proposed error bound is tighter, and converges to the generalization loss with a well-chosen tempera
Existing guarantees in terms of rigorous upper bounds on the generalization error for the original random forest algorithm, one of the most frequently used machine learning methods, are unsatisfying. We discuss and evaluate various PAC-Bayesian appro
Conditional Value at Risk (CVaR) is a family of coherent risk measures which generalize the traditional mathematical expectation. Widely used in mathematical finance, it is garnering increasing interest in machine learning, e.g., as an alternate appr
The dominant term in PAC-Bayes bounds is often the Kullback--Leibler divergence between the posterior and prior. For so-called linear PAC-Bayes risk bounds based on the empirical risk of a fixed posterior kernel, it is possible to minimize the expect