ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of coupled ion-electron transfer kinetics

118   0   0.0 ( 0 )
 نشر من قبل Dimitrios Fraggedakis Mr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively to facilitate electron transfer. We derive a general formula of the reaction rate that depends on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our formula reduces to the Butler-Volmer equation and explains its relevance, not only in the well-known limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large ion-transfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately predicts the concentration dependence of the exchange current measured by {it in operando} X-Ray microscopy without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing.



قيم البحث

اقرأ أيضاً

317 - Ping Han , Rui-Xue Xu , Ping Cui 2006
The effect of solvation on the electron transfer (ET) rate processes is investigated on the basis of the exact theory constructed in J. Phys. Chem. B Vol. 110, (2006); quant-ph/0604071. The nature of solvation is studied in a close relation with the mechanism of ET processes. The resulting Kramers turnover and Marcus inversion characteristics are analyzed accordingly. The classical picture of solvation is found to be invalid when the solvent longitudinal relaxation time is short compared with the inverse temperature.
We investigate photoinduced proton-coupled electron transfer (PI-PCET) reaction through a recently devel- oped quasi-diabatic (QD) quantum dynamics propagation scheme. This scheme enables interfacing accurate diabatic-based quantum dynamics approache s with adiabatic electronic structure calculations for on-the-fly simulations. Here, we use the QD scheme to directly propagate PI-PCET quantum dynamics with the di- abatic Partial Linearized Density Matrix (PLDM) path-integral approach with the instantaneous adiabatic electron-proton vibronic states. Our numerical results demonstrate the importance of treating proton quan- tum mechanically in order to obtain accurate PI-PCET dynamics, as well as the role of solvent fluctuation and vibrational relaxation on proton tunneling in various reaction regimes that exhibit different kinetic iso- tope effects. This work opens the possibility to study the challenging PI-PCET reactions through accurate diabatic quantum dynamics approaches combined with efficient adiabatic electronic structure calculations.
71 - I. Unger , R. Seidel , S. Thurmer 2016
A major goal of many spectroscopic techniques is to provide comprehensive information on the local chemical environment. Electron transfer mediated decay (ETMD) is a sensitive probe of the environment since it is actively involved in this non-local r adiationless decay process through electron and energy transfer steps. We report the first experimental observation of ETMD in the liquid phase. Using liquid-jet X-ray photoelectron spectroscopy we explore LiCl aqueous solution, and detect low-energy electrons unambiguously emerging from the ETMD processes of core-ionized Li+. We interpret the experimental results with molecular dynamics and high-level ab initio calculations. By considering various solvation-structure models we show that both water molecules and Cl- anions can participate in ETMD, with each process having its characteristic spectral fingerprint. Different ion associations lead to different spectral shapes. The potential application of the unique sensitivity of the ETMD spectroscopy to the local hydration structure and ion pairing is discussed.
When a molecule dissociates, the exact Kohn-Sham (KS) and Pauli potentials may form step structures. Reproducing these steps correctly is central for the description of dissociation and charge-transfer processes in density functional theory (DFT): Th e steps align the KS eigenvalues of the dissociating subsystems relative to each other and determine where electrons localize. While the step height can be calculated from the asymptotic behavior of the KS orbitals, this provides limited insight into what causes the steps. We give an explanation of the steps with an exact mapping of the many-electron problem to a one-electron problem, the exact electron factorizaton (EEF). The potentials appearing in the EEF have a clear physical meaning that translates to the DFT potentials by replacing the interacting many-electron system with the KS system. With a simple model of a diatomic, we illustrate that the steps are a consequence of spatial electron entanglement and are the result of a charge transfer. From this mechanism, the step height can immediately be deduced. Moreover, two methods to approximately reproduce the potentials during dissociation suggest themselves. One is based on the states of the dissociated system, while the other one is based on an analogy to the Born-Oppenheimer treatment of a molecule. The latter method also shows that the steps connect adiabatic potential energy surfaces. The view of DFT from the EEF thus provides a better understanding of how many-electron effects are encoded in a one-electron theory and how they can be modeled.
A variant of coupled-cluster theory is described here, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction are pre-computed and permanently folded into an effective Hamiltonian, thus avoiding redundant evaluations of local relaxations associated with coupled fluctuations. A companion article shows that a low-scaling step may be used to cast the electronic Hamiltonians of real systems into the form required. Two proof-of-principle demonstrations are presented here for non-covalent interactions. One uses harmonic oscillators, for which accuracy and algorithm structure can be carefully controlled in comparisons. The other uses small electronic systems (Be atoms) to demonstrate compelling accuracy and efficiency, also when inter-fragment electron exchange and charge transfer must be handled. Since the cost of the global calculation does not depend directly on the correlation models used for the fragments, this should provide a way to incorporate difficult electronic structure problems into large systems. This framework opens a promising path for building tunable, systematically improvable methods to capture properties of systems interacting with a large number of other systems. The extension to excited states is also straightforward.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا