ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitonic Coupled-cluster Theory

67   0   0.0 ( 0 )
 نشر من قبل Anthony D. Dutoi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A variant of coupled-cluster theory is described here, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction are pre-computed and permanently folded into an effective Hamiltonian, thus avoiding redundant evaluations of local relaxations associated with coupled fluctuations. A companion article shows that a low-scaling step may be used to cast the electronic Hamiltonians of real systems into the form required. Two proof-of-principle demonstrations are presented here for non-covalent interactions. One uses harmonic oscillators, for which accuracy and algorithm structure can be carefully controlled in comparisons. The other uses small electronic systems (Be atoms) to demonstrate compelling accuracy and efficiency, also when inter-fragment electron exchange and charge transfer must be handled. Since the cost of the global calculation does not depend directly on the correlation models used for the fragments, this should provide a way to incorporate difficult electronic structure problems into large systems. This framework opens a promising path for building tunable, systematically improvable methods to capture properties of systems interacting with a large number of other systems. The extension to excited states is also straightforward.



قيم البحث

اقرأ أيضاً

We show here that the Hamiltonian for an electronic system may be written exactly in terms of fluctuation operators that transition constituent fragments between internally correlated states, accounting rigorously for inter-fragment electron exchange and charge transfer. Familiar electronic structure approaches can be applied to the renormalized Hamiltonian. For efficiency, the basis for each fragment can be truncated, removing high-energy local arrangements of electrons from consideration, and effectively defining collective coordinates for the fragments. For a large number of problems (especially for non-covalently interacting fragments), this has the potential to fold the majority of electron correlation into the effective Hamiltonian, and it should provide a robust approach to incorporating difficult electronic structure problems into large systems. The number of terms in the exactly transformed Hamiltonian formally scales quartically with system size, but this can be reduced to quadratic in the mesoscopic regime, to within an arbitrary error tolerance. Finally, all but a linear-scaling number of these terms may be efficiently decomposed in terms of electrostatic interactions between a linear-scaling number of pre-computed transition densities. In a companion article, this formalism is applied to an excitonic variant of coupled-cluster theory.
162 - Zhihao Lan , Carlos Lobo 2015
We study excitonic states of an atomic impurity in a Fermi gas, i.e., bound states consisting of the impurity and a hole. Previous studies considered bound states of the impurity with particles from the Fermi sea where the holes only formed part of t he particle-hole dressing. Within a two-channel model, we find that, for a wide range of parameters, excitonic states are not ground but metastable states. We further calculate the decay rates of the excitonic states to polaronic and dimeronic states and find they are long lived, scaling as $Gamma^{rm{Exc}}_ {rm{Pol}} propto ( Deltaomega)^{5.5}$ and $Gamma^{rm{Exc}}_ {rm{Dim}} propto (Deltaomega)^{4}$. We also find that a new continuum of exciton-particle states should be considered alongside the previously known dimeron-hole continuum in spectroscopic measurements. Excitons must therefore be considered as a new ingredient in the study of metastable physics currently being explored experimentally.
A formal analysis is conducted on the exactness of various forms of unitary coupled cluster (UCC) theory based on particle-hole excitation and de-excitation operators. Both the conventional single exponential UCC parameterization and a disentangled ( factorized) version are considered. We formulate a differential cluster analysis to determine the UCC amplitudes corresponding to a general quantum state. The exactness of conventional UCC (ability to represent any state) is explored numerically and it is formally shown to be determined by the structure of the critical points of the UCC exponential mapping. A family of disentangled UCC wave functions are shown to exactly parameterize any state, thus showing how to construct Trotter-error-free parameterizations of UCC for applications in quantum computing. From these results, we derive an exact disentangled UCC parameterization that employs an infinite sequence of particle-hole or general one- and two-body substitution operators.
The treatment of atomic anions with Kohn-Sham density functional theory (DFT) has long been controversial since the highest occupied molecular orbital (HOMO) energy, $E_{HOMO}$, is often calculated to be positive with most approximate density functio nals. We assess the accuracy of orbital energies and electron affinities for all three rows of elements in the periodic table (H-Ar) using a variety of theoretical approaches and customized basis sets. Among all of the theoretical methods studied here, we find that a non-empirically tuned range-separated approach (constructed to satisfy DFT-Koopmans theorem for the anionic electron system) provides the best accuracy for a variety of basis sets - even for small basis sets where most functionals typically fail. Previous approaches to solve this conundrum of positive $E_{HOMO}$ values have utilized non-self-consistent methods; however electronic properties, such as electronic couplings/gradients (which require a self-consistent potential and energy), become ill-defined with these approaches. In contrast, the non-empirically tuned range-separated procedure used here yields well-defined electronic couplings/gradients and correct $E_{HOMO}$ values since both the potential and resulting electronic energy are computed self-consistently. Orbital energies and electron affinities are further analyzed in the context of the electronic energy as a function of electronic number (including fractional numbers of electrons) to provide a stringent assessment of self-interaction errors for these complex anion systems.
We make use of supersymmetric quantum mechanics (SUSY QM) to find three sets of conditions under which the problem of a planar quantum pendulum becomes analytically solvable. The analytic forms of the pendulums eigenfuntions make it possible to find analytic expressions for observables of interest, such as the expectation values of the angular momentum squared and of the orientation and alignment cosines as well as of the eigenenergy. Furthermore, we find that the topology of the intersections of the pendulums eigenenergy surfaces can be characterized by a single integer index whose values correspond to the sets of conditions under which the analytic solutions to the quantum pendulum problem exist.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا