ﻻ يوجد ملخص باللغة العربية
When a molecule dissociates, the exact Kohn-Sham (KS) and Pauli potentials may form step structures. Reproducing these steps correctly is central for the description of dissociation and charge-transfer processes in density functional theory (DFT): The steps align the KS eigenvalues of the dissociating subsystems relative to each other and determine where electrons localize. While the step height can be calculated from the asymptotic behavior of the KS orbitals, this provides limited insight into what causes the steps. We give an explanation of the steps with an exact mapping of the many-electron problem to a one-electron problem, the exact electron factorizaton (EEF). The potentials appearing in the EEF have a clear physical meaning that translates to the DFT potentials by replacing the interacting many-electron system with the KS system. With a simple model of a diatomic, we illustrate that the steps are a consequence of spatial electron entanglement and are the result of a charge transfer. From this mechanism, the step height can immediately be deduced. Moreover, two methods to approximately reproduce the potentials during dissociation suggest themselves. One is based on the states of the dissociated system, while the other one is based on an analogy to the Born-Oppenheimer treatment of a molecule. The latter method also shows that the steps connect adiabatic potential energy surfaces. The view of DFT from the EEF thus provides a better understanding of how many-electron effects are encoded in a one-electron theory and how they can be modeled.
Density functional theory is generalized to incorporate electron-phonon coupling. A Kohn-Sham equation yielding the electronic density $n_U(mathbf{r})$, a conditional probability density depending parametrically on the phonon normal mode amplitudes $
The charge delocalization error, besides nondynamic correlation, has been a major challenge to density functional theory. Contemporary functionals undershoot the dissociation of symmetric charged dimers A2+, a simple but stringent test, predict a spu
We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) from the ground and excited states of helium. The exchange-correlation (XC) potential is compared with the quasi-local-density approximation and both single det
Machine learning is a powerful tool to design accurate, highly non-local, exchange-correlation functionals for density functional theory. So far, most of those machine learned functionals are trained for systems with an integer number of particles. A
We present a Gaussian-basis implementation of orbital-free density-functional theory (OF-DFT) in which the trust-region image method (TRIM) is used for optimization. This second-order optimization scheme has been constructed to provide benchmark all-