ﻻ يوجد ملخص باللغة العربية
We have investigated photoconductive properties of single Germanium Nanowires(NWs)of diameter less than 100 nm in the spectral range of 300 to 1100 nm showing ultra large peak Responsivity in excess of 10^{7}AW^{-1}.The NWs were grown by Vapor Liquid Solid method using Au nanoparticle as catalyst. In this report we discuss the likely origin of the ultra large responsivity that may arise from a combination of various physical effects which are a): Ge and GeO_{x} interface states which act as scavengers of electrons from the photo-generated pairs,leaving the holes free to reach the electrodes,b) Schottky barrier at the metal and NW interface which gets lowered substantially due to carrier diffusion in contact region and (c) photodetector length being small (approximately few {mu}m), negligible loss of photogenerated carriers due to recombination at defect sites. We have observed from power dependence of the optical gain that the gain is controlled by trap states. We find that the surface of the nanowire has presence of a thin layer of GeO_{x} (as evidenced from HRTEM study) which provide interface states. It is observed that these state play a crucial role to provide a radial field for separation of photogenerated electron and hole pair which in turn leads to very high effective photoconductive gain that reaches a very high at low illumination density.
Silicon photonics is being extended from the near-infrared (near-IR) window of 1.3-1.5 {mu}m for optical fiber communications to the mid-infrared (mid-IR) wavelength-band of 2 {mu}m or longer for satisfying the increasing demands in many applications
We demonstrate waveguide-integrated superconducting nanowire single-photon detectors on thin-film lithium niobate (LN). Using a 250 um-long NbN superconducting nanowire lithographically defined on top of a 125 um-long LN nanowaveguide, on-chip detect
Integrated photodetectors are essential components of scalable photonics platforms for quantum and classical applications. However, most efforts in the development of such devices to date have been focused on infrared telecommunications wavelengths.
Photodetectors are key optoelectronic building blocks performing the essential optical-to-electrical signal conversion, and unlike solar cells, operate at a specific wavelength and at high signal or sensory speeds. Towards achieving high detector per
Semiconductor nanowire field-effect transistors represent a promising platform for the development of room-temperature (RT) terahertz (THz) frequency light detectors due to the strong nonlinearity of their transfer characteristics and their remarkabl