ترغب بنشر مسار تعليمي؟ اضغط هنا

Lithium-Niobate-on-Insulator Waveguide-Integrated Superconducting Nanowire Single-Photon Detectors

461   0   0.0 ( 0 )
 نشر من قبل Ayed Al Sayem
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate waveguide-integrated superconducting nanowire single-photon detectors on thin-film lithium niobate (LN). Using a 250 um-long NbN superconducting nanowire lithographically defined on top of a 125 um-long LN nanowaveguide, on-chip detection efficiency of 46% is realized with simultaneous high performance in dark count rate and timing jitter. As LN possesses high second-order nonlinear c{hi}(2) and electro-optic properties, an efficient single-photon detector on thin-film LN opens up the possibility to construct small scale fully-integrated quantum photonic chip which includes single-photon sources, filters, tunable quantum gates and detectors.

قيم البحث

اقرأ أيضاً

We demonstrate the integration of amorphous tungsten silicide superconducting nanowire single-photon detectors on titanium in-diffused lithium niobate waveguides. We show proof-of-principle detection of evanescently-coupled photons of 1550nm waveleng th using bidirectional waveguide coupling for two orthogonal polarization directions. We investigate the internal detection efficiency as well as detector absorption using coupling-independent characterization measurements. Furthermore, we describe strategies to improve the yield and efficiency of these devices.
We investigate the role of electrothermal feedback in the operation of superconducting nanowire single-photon detectors (SNSPDs). It is found that the desired mode of operation for SNSPDs is only achieved if this feedback is unstable, which happens n aturally through the slow electrical response associated with their relatively large kinetic inductance. If this response is sped up in an effort to increase the device count rate, the electrothermal feedback becomes stable and results in an effect known as latching, where the device is locked in a resistive state and can no longer detect photons. We present a set of experiments which elucidate this effect, and a simple model which quantitatively explains the results.
We demonstrate cryogenic, electrically-injected, waveguide-coupled Si light-emitting diodes (LEDs) operating at 1.22 $mu$m. The active region of the LED consists of W centers implanted in the intrinsic region of a $p$-$i$-$n$ diode. The LEDs are inte grated on waveguides with superconducting nanowire single-photon detectors (SNSPDs). We demonstrate the scalability of this platform with an LED coupled to eleven SNSPDs in a single integrated photonic device. Such on-chip optical links may be useful for quantum information or neuromorphic computing applications.
We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark nois e of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of $0.6times10^4$ photons/(s$cdot$mW$cdot$MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.
We demonstrate high-performance nanowire superconducting single photon detectors (SSPDs) on ultrathin NbN films grown at a temperature compatible with monolithic integration. NbN films ranging from 150nm to 3nm in thickness were deposited by dc magne tron sputtering on MgO substrates at 400C. The superconducting properties of NbN films were optimized studying the effects of deposition parameters on film properties. SSPDs were fabricated on high quality NbN films of different thickness (7 to 3nm) deposited under optimal conditions. Electrical and optical characterizations were performed on the SSPDs. The highest QE value measured at 4.2K is 20% at 1300nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا