ترغب بنشر مسار تعليمي؟ اضغط هنا

Critically Examining the Claimed Value of Convolutions over User-Item Embedding Maps for Recommender Systems

58   0   0.0 ( 0 )
 نشر من قبل Maurizio Ferrari Dacrema
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, algorithm research in the area of recommender systems has shifted from matrix factorization techniques and their latent factor models to neural approaches. However, given the proven power of latent factor models, some newer neural approaches incorporate them within more complex network architectures. One specific idea, recently put forward by several researchers, is to consider potential correlations between the latent factors, i.e., embeddings, by applying convolutions over the user-item interaction map. However, contrary to what is claimed in these articles, such interaction maps do not share the properties of images where Convolutional Neural Networks (CNNs) are particularly useful. In this work, we show through analytical considerations and empirical evaluations that the claimed gains reported in the literature cannot be attributed to the ability of CNNs to model embedding correlations, as argued in the original papers. Moreover, additional performance evaluations show that all of the examined recent CNN-based models are outperformed by existing non-neural machine learning techniques or traditional nearest-neighbor approaches. On a more general level, our work points to major methodological issues in recommender systems research.

قيم البحث

اقرأ أيضاً

Modeling user interests is crucial in real-world recommender systems. In this paper, we present a new user interest representation model for personalized recommendation. Specifically, the key novelty behind our model is that it explicitly models user interests as a hypercuboid instead of a point in the space. In our approach, the recommendation score is learned by calculating a compositional distance between the user hypercuboid and the item. This helps to alleviate the potential geometric inflexibility of existing collaborative filtering approaches, enabling a greater extent of modeling capability. Furthermore, we present two variants of hypercuboids to enhance the capability in capturing the diversities of user interests. A neural architecture is also proposed to facilitate user hypercuboid learning by capturing the activity sequences (e.g., buy and rate) of users. We demonstrate the effectiveness of our proposed model via extensive experiments on both public and commercial datasets. Empirical results show that our approach achieves very promising results, outperforming existing state-of-the-art.
68 - Zhuoyi Lin , Lei Feng , Rui Yin 2020
Graph-based recommendation models work well for top-N recommender systems due to their capability to capture the potential relationships between entities. However, most of the existing methods only construct a single global item graph shared by all t he users and regrettably ignore the diverse tastes between different user groups. Inspired by the success of local models for recommendation, this paper provides the first attempt to investigate multiple local item graphs along with a global item graph for graph-based recommendation models. We argue that recommendation on global and local graphs outperforms that on a single global graph or multiple local graphs. Specifically, we propose a novel graph-based recommendation model named GLIMG (Global and Local IteM Graphs), which simultaneously captures both the global and local user tastes. By integrating the global and local graphs into an adapted semi-supervised learning model, users preferences on items are propagated globally and locally. Extensive experimental results on real-world datasets show that our proposed method consistently outperforms the state-of-the art counterparts on the top-N recommendation task.
General-purpose representation learning through large-scale pre-training has shown promising results in the various machine learning fields. For an e-commerce domain, the objective of general-purpose, i.e., one for all, representations would be effic ient applications for extensive downstream tasks such as user profiling, targeting, and recommendation tasks. In this paper, we systematically compare the generalizability of two learning strategies, i.e., transfer learning through the proposed model, ShopperBERT, vs. learning from scratch. ShopperBERT learns nine pretext tasks with 79.2M parameters from 0.8B user behaviors collected over two years to produce user embeddings. As a result, the MLPs that employ our embedding method outperform more complex models trained from scratch for five out of six tasks. Specifically, the pre-trained embeddings have superiority over the task-specific supervised features and the strong baselines, which learn the auxiliary dataset for the cold-start problem. We also show the computational efficiency and embedding visualization of the pre-trained features.
Among various recommender techniques, collaborative filtering (CF) is the most successful one. And a key problem in CF is how to represent users and items. Previous works usually represent a user (an item) as a vector of latent factors (aka. textit{e mbedding}) and then model the interactions between users and items based on the representations. Despite its effectiveness, we argue that its insufficient to yield satisfactory embeddings for collaborative filtering. Inspired by the idea of SVD++ that represents users based on themselves and their interacted items, we propose a general collaborative filtering framework named DNCF, short for Dual-embedding based Neural Collaborative Filtering, to utilize historical interactions to enhance the representation. In addition to learning the primitive embedding for a user (an item), we introduce an additional embedding from the perspective of the interacted items (users) to augment the user (item) representation. Extensive experiments on four publicly datasets demonstrated the effectiveness of our proposed DNCF framework by comparing its performance with several traditional matrix factorization models and other state-of-the-art deep learning based recommender models.
We present collaborative similarity embedding (CSE), a unified framework that exploits comprehensive collaborative relations available in a user-item bipartite graph for representation learning and recommendation. In the proposed framework, we differ entiate two types of proximity relations: direct proximity and k-th order neighborhood proximity. While learning from the former exploits direct user-item associations observable from the graph, learning from the latter makes use of implicit associations such as user-user similarities and item-item similarities, which can provide valuable information especially when the graph is sparse. Moreover, for improving scalability and flexibility, we propose a sampling technique that is specifically designed to capture the two types of proximity relations. Extensive experiments on eight benchmark datasets show that CSE yields significantly better performance than state-of-the-art recommendation methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا