ﻻ يوجد ملخص باللغة العربية
In exotic superconductors including high-$T_c$ copper-oxides, the interactions mediating electron Cooper-pairing are widely considered to have a magnetic rather than the conventional electron-phonon origin. Interest in such exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu$_2$Si$_2$, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. Here, we report low-temperature specific heat, thermal conductivity and magnetic penetration depth measurements in CeCu$_2$Si$_2$, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron-irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully-gapped s-wave superconducting state, which has an on-site attractive pairing interaction.
A key aspect of unconventional pairing by the antiferromagnetic spin-fluctuation mechanism is that the superconducting energy gap must have opposite sign on different parts of the Fermi surface. Recent observations of non-nodal gap structure in the h
We investigate the superconducting gap function of topological superconductor PbTaSe$_2$. Temperature, magnetic field, and three-dimensional (3D) field-angle dependences of the specific heat prove that the superconductivity of PbTaSe$_2$ is fully-gap
We investigated the superconducting gap structure of SrNi$_2$P$_{2}$ ($T_c$=1.4 K) via low-temperature magneto-thermal conductivity $kappa(T,H)$ measurements. Zero field thermal conductivity $kappa$ decreases exponentially $kappa propto$ exp($-aT_c/T
We have performed low-temperature specific heat $C$ and thermal conductivity $kappa$ measurements on the Ni-pnictide superconductors BaNi$_2$As$_2$ ($T_mathrm{c}$=0.7 K and SrNi$_2$P$_2$ ($T_mathrm{c}$=1.4 K). The temperature dependences $C(T)$ and $
Superconductivity in lanthanide- and actinide-based heavy-fermion metals can have different microscopic origins. Among others, Cooper pair formation based on fluctuations of the valence, of the quadrupole moment or of the spin of the localized 4f/5f