ﻻ يوجد ملخص باللغة العربية
In data science, there is a long history of using synthetic data for method development, feature selection and feature engineering. Our current interest in synthetic data comes from recent work in explainability. Todays datasets are typically larger and more complex - requiring less interpretable models. In the setting of textit{post hoc} explainability, there is no ground truth for explanations. Inspired by recent work in explaining image classifiers that does provide ground truth, we propose a similar solution for tabular data. Using copulas, a concise specification of the desired statistical properties of a dataset, users can build intuition around explainability using controlled data sets and experimentation. The current capabilities are demonstrated on three use cases: one dimensional logistic regression, impact of correlation from informative features, impact of correlation from redundant variables.
Tabular data is the most common data format adopted by our customers ranging from retail, finance to E-commerce, and tabular data classification plays an essential role to their businesses. In this paper, we present Network On Network (NON), a practi
Automatic machine learning-based detectors of various psychological and social phenomena (e.g., emotion, stress, engagement) have great potential to advance basic science. However, when a detector $d$ is trained to approximate an existing measurement
For sake of reliability, it is necessary for models in real-world applications to be both powerful and globally interpretable. Simple classifiers, e.g., Logistic Regression (LR), are globally interpretable, but not powerful enough to model complex no
Artificial intelligence is applied in a range of sectors, and is relied upon for decisions requiring a high level of trust. For regression methods, trust is increased if they approximate the true input-output relationships and perform accurately outs
Feature crossing captures interactions among categorical features and is useful to enhance learning from tabular data in real-world businesses. In this paper, we present AutoCross, an automatic feature crossing tool provided by 4Paradigm to its custo