ﻻ يوجد ملخص باللغة العربية
For sake of reliability, it is necessary for models in real-world applications to be both powerful and globally interpretable. Simple classifiers, e.g., Logistic Regression (LR), are globally interpretable, but not powerful enough to model complex nonlinear interactions among features in tabular data. Meanwhile, Deep Neural Networks (DNNs) have shown great effectiveness for modeling tabular data, but is not globally interpretable. In this work, we find local piece-wise interpretations in DNN of a specific feature are usually inconsistent in different samples, which is caused by feature interactions in the hidden layers. Accordingly, we can design an automatic feature crossing method to find feature interactions in DNN, and use them as cross features in LR. We give definition of the interpretation inconsistency in DNN, based on which a novel feature crossing method called DNN2LR is proposed. Extensive experiments have been conducted on four public datasets and two real-world datasets. The final model, i.e., a LR model empowered with cross features, generated by DNN2LR can outperform the complex DNN model, as well as several state-of-the-art feature crossing methods. The experimental results strongly verify the effectiveness and efficiency of DNN2LR, especially on real-world datasets with large numbers of feature fields.
Feature crossing captures interactions among categorical features and is useful to enhance learning from tabular data in real-world businesses. In this paper, we present AutoCross, an automatic feature crossing tool provided by 4Paradigm to its custo
Tabular data is the most common data format adopted by our customers ranging from retail, finance to E-commerce, and tabular data classification plays an essential role to their businesses. In this paper, we present Network On Network (NON), a practi
Credit scoring is a major application of machine learning for financial institutions to decide whether to approve or reject a credit loan. For sake of reliability, it is necessary for credit scoring models to be both accurate and globally interpretab
High-order interactive features capture the correlation between different columns and thus are promising to enhance various learning tasks on ubiquitous tabular data. To automate the generation of interactive features, existing works either explicitl
A new method for local and global explanation of the machine learning black-box model predictions by tabular data is proposed. It is implemented as a system called AFEX (Attention-like Feature EXplanation) and consisting of two main parts. The first