ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulk and surface properties of SmB6

81   0   0.0 ( 0 )
 نشر من قبل Priscila Rosa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Samarium hexaboride crystallizes in a simple cubic structure (space group #221, Pm-3m), but its properties are far from being straightforward. Initially classified as a Kondo insulator born out of its intriguing intermediate valence ground state, SmB6 has been recently predicted to be a strongly correlated topological insulator. The subsequent experimental discovery of surface states has revived the interest in SmB6, and our purpose here is to review the extensive and in many aspects perplexing experimental record of this material. We will discuss both surface and bulk properties of SmB6 with an emphasis on the role of crystal growth and sample preparation. We will also highlight the remaining mysteries and open questions in the field.



قيم البحث

اقرأ أيضاً

Bulk and surface state contributions to the electrical resistance of single-crystal samples of the topological Kondo insulator compound SmB6 are investigated as a function of crystal thickness and surface charge density, the latter tuned by ionic liq uid gating with electrodes patterned in a Corbino disk geometry on a single surface. By separately tuning bulk and surface conduction channels, we show conclusive evidence for a model with an insulating bulk and metallic surface states, with a crossover temperature that depends solely on the relative contributions of each conduction channel. The surface conductance, on the order of 100 e^2/h and electron-like, exhibits a field-effect mobility of 133 cm^2/V/s and a large carrier density of ~2x10^{14}/cm^2, in good agreement with recent photoemission results. With the ability to gate-modulate surface conduction by more than 25%, this approach provides promise for both fundamental and applied studies of gate-tuned devices structured on bulk crystal samples.
168 - N. Heming 2015
We have investigated the properties of cleaved SmB$_6$ single crystals by x-ray photoelectron spectroscopy. At low temperatures and freshly cleaved samples a surface core level shift is observed which vanishes when the temperature is increased. A Sm valence between 2.5 - 2.6 is derived from the relative intensities of the Sm$^{2+}$ and Sm$^{3+}$ multiplets. The B/Sm intensity ratio obtained from the core levels is always larger than the stoichiometric value. Possible reasons for this deviation are discussed. The B $1s$ signal shows an unexpected complexity: an anomalous low energy component appears with increasing temperature and is assigned to the formation of a suboxide at the surface. While several interesting intrinsic and extrinsic properties of the SmB$_6$ surface are elucidated in this manuscript no clear indication of a trivial mechanism for the prominent surface conductivity is found.
363 - F. Chen , C. Shang , Z. Jin 2013
Recently, the resistance saturation at low temperature in Kondo insulator SmB6, a long-standing puzzle in condensed matter physics, was proposed to originate from topological surface state. Here,we systematically studied the magnetoresistance of SmB6 at low temperature up to 55 Tesla. Both temperature- and angular-dependent magnetoresistances show a similar crossover behavior below 5 K. Furthermore, the angular-dependent magnetoresistance on different crystal face confirms a two-dimensional surface state as the origin of magnetoresistances crossover below 5K. Based on two-channels model consisting of both surface and bulk states, the field-dependence of bulk gap with critical magnetic field (Hc) of 196 T is extracted from our temperature-dependent resistance under different magnetic fields. Our results give a consistent picture to understand the low-temperature transport behavior in SmB6, consistent with topological Kondo insulator scenario.
We report temperature and thermal-cycling dependence of surface and bulk structures of double-layered perovskite Sr3Ru2O7 single crystals. The surface and bulk structures were investigated using low-energy electron diffraction (LEED) and single-cryst al X-ray diffraction (XRD) techniques, respectively. Single-crystal XRD data is in good agreement with previous reports for the bulk structure with RuO6 octahedral rotation, which increases with decreasing temperature (~ 6.7(6)degrees at 300 K and ~ 8.1(2) degrees at 90 K). LEED results reveal that the octahedra at the surface are much more distorted with a higher rotation angle (~ 12 degrees between 300 and 80 K) and a slight tilt ((4.5pm2.5) degrees at 300 K and (2.5pm1.7) degrees at 80 K). While XRD data confirms temperature dependence of the unit cell height/width ratio (i.e. lattice parameter c divided by the average of parameters a and b) found in a prior neutron powder diffraction investigation, both bulk and surface structures display little change with thermal cycles between 300 and 80 K.
We have carried out bulk-sensitive hard x-ray photoelectron spectroscopy (HAXPES) measurements on in-situ cleaved and ex-situ polished SmB6 single crystals. Using the multiplet-structure in the Sm 3d core level spectra, we determined reliably that th e valence of Sm in bulk SmB6 is close to 2.55 at ~5 K. Temperature dependent measurements revealed that the Sm valence gradually increases to 2.64 at 300 K. From a detailed line shape analysis we can clearly observe that not only the J=0 but also the J=1 state of the Sm 4f 6 configuration becomes occupied at elevated temperatures. Making use of the polarization dependence, we were able to identify and extract the Sm 4f spectral weight of the bulk material. Finally, we revealed that the oxidized or chemically damaged surface region of the ex-situ polished SmB6 single crystal is surprisingly thin, about 1 nm only.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا