ترغب بنشر مسار تعليمي؟ اضغط هنا

Inductive construction of stable envelopes

115   0   0.0 ( 0 )
 نشر من قبل Andrei Okounkov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrei Okounkov




اسأل ChatGPT حول البحث

We revisit the construction of stable envelopes in equivariant elliptic cohomology [arXiv:1604.00423] and give a direct inductive proof of their existence and uniqueness in a rather general situation. We also discuss the specialization of this construction to equivariant K-theory.

قيم البحث

اقرأ أيضاً

We construct stable envelopes in equivariant elliptic cohomology of Nakajima quiver varieties. In particular, this gives an elliptic generalization of the results of arXiv:1211.1287. We apply them to the computation of the monodromy of $q$-difference equations arising the enumerative K-theory of rational curves in Nakajima varieties, including the quantum Knizhnik-Zamolodchikov equations.
This paper relates the elliptic stable envelopes of a hypertoric variety $X$ with the K-theoretic stable envelopes of the loop hypertoric space, $widetilde{mathscr{L}}X$. It thus points to a possible categorification of elliptic stable envelopes.
Let G be a split, simple, simply connected, algebraic group over Q. The degree 4, weight 2 motivic cohomology group of the classifying space BG of G is identified with Z. We construct cocycles representing the generator of this group, known as the se cond universal motivic Chern class. If G = SL(m), there is a canonical cocycle, defined by the first author (1993). For any group G, we define a collection of cocycles parametrised by cluster coordinate systems on the space of G-orbits on the cube of the principal affine space G/U. Cocycles for different clusters are related by explicit coboundaries, constructed using cluster transformations relating the clusters. The cocycle has three components. The construction of the last one is canonical and elementary; it does not use clusters, and provides a canonical cocycle for the motivic generator of the degree 3 cohomology class of the complex manifold G(C). However to lift this component to the whole cocycle we need cluster coordinates: the construction of the first two components uses crucially the cluster structure of the moduli spaces A(G,S) related to the moduli space of G-local systems on S. In retrospect, it partially explains why the cluster coordinates on the space A(G,S) should exist. This construction has numerous applications, including an explicit construction of the universal extension of the group G by K_2, the line bundle on Bun(G) generating its Picard group, Kac-Moody groups, etc. Another application is an explicit combinatorial construction of the second motivic Chern class of a G-bundle. It is a motivic analog of the work of Gabrielov-Gelfand-Losik (1974), for any G.
For n even, we prove Pozhidaevs conjecture on the existence of associative enveloping algebras for simple n-Lie algebras. More generally, for n even and any (n+1)-dimensional n-Lie algebra L, we construct a universal associative enveloping algebra U( L) and show that the natural map from L to U(L) is injective. We use noncommutative Grobner bases to present U(L) as a quotient of the free associative algebra on a basis of L and to obtain a monomial basis of U(L). In the last section, we provide computational evidence that the construction of U(L) is much more difficult for n odd.
In this article we study the Gieseker-Maruyama moduli spaces $mathcal{B}(e,n)$ of stable rank 2 algebraic vector bundles with Chern classes $c_1=ein{-1,0}, c_2=nge1$ on the projective space $mathbb{P}^3$. We construct two new infinite series $Sigma_0 $ and $Sigma_1$ of irreducible components of the spaces $mathcal{B}(e,n)$, for $e=0$ and $e=-1$, respectively. General bundles of these components are obtained as cohomology sheaves of monads, the middle term of which is a rank 4 symplectic instanton bundle in case $e=0$, respectively, twisted symplectic bundle in case $e=-1$. We show that the series $Sigma_0$ contains components for all big enough values of $n$ (more precisely, at least for $nge146$). $Sigma_0$ yields the next example, after the series of instanton components, of an infinite series of components of $mathcal{B}(0,n)$ satisfying this property.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا