ﻻ يوجد ملخص باللغة العربية
For n even, we prove Pozhidaevs conjecture on the existence of associative enveloping algebras for simple n-Lie algebras. More generally, for n even and any (n+1)-dimensional n-Lie algebra L, we construct a universal associative enveloping algebra U(L) and show that the natural map from L to U(L) is injective. We use noncommutative Grobner bases to present U(L) as a quotient of the free associative algebra on a basis of L and to obtain a monomial basis of U(L). In the last section, we provide computational evidence that the construction of U(L) is much more difficult for n odd.
Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-L
The $n$-Lie bialgebras are studied. In Section 2, the $n$-Lie coalgebra with rank $r$ is defined, and the structure of it is discussed. In Section 3, the $n$-Lie bialgebra is introduced. A triple $(L, mu, Delta)$ is an $n$-Lie bialgebra if and only i
In this paper, we define a class of 3-algebras which are called 3-Lie-Rinehart algebras. A 3-Lie-Rinehart algebra is a triple $(L, A, rho)$, where $A$ is a commutative associative algebra, $L$ is an $A$-module, $(A, rho)$ is a 3-Lie algebra $L$-modul
In this paper, first we introduce the notion of a twilled 3-Lie algebra, and construct an $L_infty$-algebra, whose Maurer-Cartan elements give rise to new twilled 3-Lie algebras by twisting. In particular, we recover the Lie $3$-algebra whose Maurer-
In this work we investigate the complex Leibniz superalgebras with characteristic sequence $(n-1, 1 | m_1, ..., m_k)$ and with nilindex equal to $n+m.$ We prove that such superalgebras with the condition $m_2 eq0$ have nilindex less than $n+m$. There