ﻻ يوجد ملخص باللغة العربية
We construct stable envelopes in equivariant elliptic cohomology of Nakajima quiver varieties. In particular, this gives an elliptic generalization of the results of arXiv:1211.1287. We apply them to the computation of the monodromy of $q$-difference equations arising the enumerative K-theory of rational curves in Nakajima varieties, including the quantum Knizhnik-Zamolodchikov equations.
This paper relates the elliptic stable envelopes of a hypertoric variety $X$ with the K-theoretic stable envelopes of the loop hypertoric space, $widetilde{mathscr{L}}X$. It thus points to a possible categorification of elliptic stable envelopes.
We revisit the construction of stable envelopes in equivariant elliptic cohomology [arXiv:1604.00423] and give a direct inductive proof of their existence and uniqueness in a rather general situation. We also discuss the specialization of this construction to equivariant K-theory.
We define the BPS invariants of Gopakumar-Vafa in the case of irreducible curve classes on Calabi-Yau 3-folds. The main tools are the theory of stable pairs in the derived category and Behrends constructible function approach to the virtual class. We
On a Weierstra{ss} elliptic surface $X$, we define a `limit of Bridgeland stability conditions, denoted as $Z^l$-stability, by moving the polarisation towards the fiber direction in the ample cone while keeping the volume of the polarisation fixed. W
The theory of stable pairs in the derived category yields an enumerative geometry of curves in 3-folds. We evaluate the equivariant vertex for stable pairs on toric 3-folds in terms of weighted box counting. In the toric Calabi-Yau case, the result s