ﻻ يوجد ملخص باللغة العربية
We study the homological algebra of edge ideals of Erd{o}s-Renyi random graphs. These random graphs are generated by deleting edges of a complete graph on $n$ vertices independently of each other with probability $1-p$. We focus on some aspects of these random edge ideals - linear resolution, unmixedness and algebraic invariants like the Castelnuovo-Mumford regularity, projective dimension and depth. We first show a double phase transition for existence of linear presentation and resolution and determine the critical windows as well. As a consequence, we obtain that except for a very specific choice of parameters (i.e., $n,p := p(n)$), with high probability, a random edge ideal has linear presentation if and only if it has linear resolution. This shows certain conjectures hold true for large random graphs with high probability even though the conjectures were shown to fail for determinstic graphs. Next, we study asymptotic behaviour of some algebraic invariants - the Castelnuovo-Mumford regularity, projective dimension and depth - of such random edge ideals in the sparse regime (i.e., $p = frac{lambda}{n}, lambda in (0,infty)$). These invariants are studied using local weak convergence (or Benjamini-Schramm convergence) and relating them to invariants on Galton-Watson trees. We also show that when $p to 0$ or $p to 1$ fast enough, then with high probability the edge ideals are unmixed and for most other choices of $p$, these ideals are not unmixed with high probability. This is further progress towards the conjecture that random monomial ideals are unlikely to have Cohen-Macaulay property (see De Loera et al. 2019a,2019b) in the setting when the number of variables goes to infinity but the degree is fixed.
Let $D=(G,mathcal{O},w)$ be a weighted oriented graph whose edge ideal is $I(D)$. In this paper, we characterize the unmixed property of $I(D)$ for each one of the following cases: $G$ is an $SCQ$ graph; $G$ is a chordal graph; $G$ is a simplicial gr
In this paper we prove the conjectured upper bound for Castelnuovo-Mumford regularity of binomial edge ideals posed in [23], in the case of chordal graphs. Indeed, we show that the regularity of any chordal graph G is bounded above by the number of m
We graph-theoretically characterize the class of graphs $G$ such that $I(G)^2$ are Buchsbaum.
The main contribution of this article is an asymptotic expression for the rate associated with moderate deviations of subgraph counts in the ErdH{o}s-Renyi random graph $G(n,m)$. Our approach is based on applying Freedmans inequalities for the probab
We study homological properties of random quadratic monomial ideals in a polynomial ring $R = {mathbb K}[x_1, dots x_n]$, utilizing methods from the Erd{o}s-R{e}nyi model of random graphs. Here for a graph $G sim G(n, p)$ we consider the `coedge idea