We compute the Betti numbers for all the powers of initial and final lexsegment edge ideals. For the powers of the edge ideal of an anti-$d-$path, we prove that they have linear quotients and we characterize the normally torsion-free ideals. We deter
mine a class of non-squarefree ideals, arising from some particular graphs, which are normally torsion-free.
Let R be a commutative ring. If P is a maximal ideal of R whose a power is finitely generated then we prove that P is finitely generated if R is either locally coherent or arithmetical or a polynomial ring over a ring of global dimension $le$ 2. And
if P is a prime ideal of R whose a power is finitely generated then we show that P is finitely generated if R is either a reduced coherent ring or a polynomial ring over a reduced arithmetical ring. These results extend a theorem of Roitman, published in 2001, on prime ideals of coherent integral domains.
The index of a graded ideal measures the number of linear steps in the graded minimal free resolution of the ideal. In this paper we study the index of powers and squarefree powers of edge ideals. Our results indicate that the index as a function of
the power of an edge ideal $I$ is strictly increasing if $I$ has linear relations. Examples show that this need not to be the case for monomial ideals generated in degree greater than two.
We study the homological algebra of edge ideals of Erd{o}s-Renyi random graphs. These random graphs are generated by deleting edges of a complete graph on $n$ vertices independently of each other with probability $1-p$. We focus on some aspects of th
ese random edge ideals - linear resolution, unmixedness and algebraic invariants like the Castelnuovo-Mumford regularity, projective dimension and depth. We first show a double phase transition for existence of linear presentation and resolution and determine the critical windows as well. As a consequence, we obtain that except for a very specific choice of parameters (i.e., $n,p := p(n)$), with high probability, a random edge ideal has linear presentation if and only if it has linear resolution. This shows certain conjectures hold true for large random graphs with high probability even though the conjectures were shown to fail for determinstic graphs. Next, we study asymptotic behaviour of some algebraic invariants - the Castelnuovo-Mumford regularity, projective dimension and depth - of such random edge ideals in the sparse regime (i.e., $p = frac{lambda}{n}, lambda in (0,infty)$). These invariants are studied using local weak convergence (or Benjamini-Schramm convergence) and relating them to invariants on Galton-Watson trees. We also show that when $p to 0$ or $p to 1$ fast enough, then with high probability the edge ideals are unmixed and for most other choices of $p$, these ideals are not unmixed with high probability. This is further progress towards the conjecture that random monomial ideals are unlikely to have Cohen-Macaulay property (see De Loera et al. 2019a,2019b) in the setting when the number of variables goes to infinity but the degree is fixed.
In this article, we prove that for several classes of graphs, the Castelnuovo-Mumford regularity of symbolic powers of their edge ideals coincide with that of their ordinary powers.