ﻻ يوجد ملخص باللغة العربية
Let $D=(G,mathcal{O},w)$ be a weighted oriented graph whose edge ideal is $I(D)$. In this paper, we characterize the unmixed property of $I(D)$ for each one of the following cases: $G$ is an $SCQ$ graph; $G$ is a chordal graph; $G$ is a simplicial graph; $G$ is a perfect graph; $G$ has no $4$- or $5$-cycles; $G$ is a graph without $3$- and $5$-cycles; and ${rm girth}(G)geqslant 5$.
We study the homological algebra of edge ideals of Erd{o}s-Renyi random graphs. These random graphs are generated by deleting edges of a complete graph on $n$ vertices independently of each other with probability $1-p$. We focus on some aspects of th
We construct minimal cellular resolutions of squarefree monomial ideals arising from hyperplane arrangements, matroids and oriented matroids. These are Stanley-Reisner ideals of complexes of independent sets, and of triangulations of Lawrence matroid
Let I=I(D) be the edge ideal of a weighted oriented graph D. We determine the irredundant irreducible decomposition of I. Also, we characterize the associated primes and the unmixed property of I. Furthermore, we give a combinatorial characterization
In this paper we provide some exact formulas for the projective dimension and the regularity of edge ideals associated to three special types of vertex-weighted oriented $m$-partite graphs. These formulas are functions of the weight and number of ver
We show that a number of conditions on oriented graphs, all of which are satisfied with high probability by randomly oriented graphs, are equivalent. These equivalences are similar to those given by Chung, Graham and Wilson in the case of unoriented