ﻻ يوجد ملخص باللغة العربية
Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets. This setup faces challenges originating from the limited labeled data in each class and, additionally, from the domain shift between training and test sets. In this paper, we introduce a novel training approach for existing FSC models. It leverages on the explanation scores, obtained from existing explanation methods when applied to the predictions of FSC models, computed for intermediate feature maps of the models. Firstly, we tailor the layer-wise relevance propagation (LRP) method to explain the predictions of FSC models. Secondly, we develop a model-agnostic explanation-guided training strategy that dynamically finds and emphasizes the features which are important for the predictions. Our contribution does not target a novel explanation method but lies in a novel application of explanations for the training phase. We show that explanation-guided training effectively improves the model generalization. We observe improved accuracy for three different FSC models: RelationNet, cross attention network, and a graph neural network-based formulation, on five few-shot learning datasets: miniImagenet, CUB, Cars, Places, and Plantae. The source code is available at https://github.com/SunJiamei/few-shot-lrp-guided
Few-shot segmentation has been attracting a lot of attention due to its effectiveness to segment unseen object classes with a few annotated samples. Most existing approaches use masked Global Average Pooling (GAP) to encode an annotated support image
Few-shot classification aims to recognize unlabeled samples from unseen classes given only few labeled samples. The unseen classes and low-data problem make few-shot classification very challenging. Many existing approaches extracted features from la
Recent progress on few-shot learning largely relies on annotated data for meta-learning: base classes sampled from the same domain as the novel classes. However, in many applications, collecting data for meta-learning is infeasible or impossible. Thi
A recent study finds that existing few-shot learning methods, trained on the source domain, fail to generalize to the novel target domain when a domain gap is observed. This motivates the task of Cross-Domain Few-Shot Learning (CD-FSL). In this paper
Adapting pre-trained representations has become the go-to recipe for learning new downstream tasks with limited examples. While literature has demonstrated great successes via representation learning, in this work, we show that substantial performanc