ترغب بنشر مسار تعليمي؟ اضغط هنا

Meta-FDMixup: Cross-Domain Few-Shot Learning Guided by Labeled Target Data

127   0   0.0 ( 0 )
 نشر من قبل Yuqian Fu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent study finds that existing few-shot learning methods, trained on the source domain, fail to generalize to the novel target domain when a domain gap is observed. This motivates the task of Cross-Domain Few-Shot Learning (CD-FSL). In this paper, we realize that the labeled target data in CD-FSL has not been leveraged in any way to help the learning process. Thus, we advocate utilizing few labeled target data to guide the model learning. Technically, a novel meta-FDMixup network is proposed. We tackle this problem mainly from two aspects. Firstly, to utilize the source and the newly introduced target data of two different class sets, a mixup module is re-proposed and integrated into the meta-learning mechanism. Secondly, a novel disentangle module together with a domain classifier is proposed to extract the disentangled domain-irrelevant and domain-specific features. These two modules together enable our model to narrow the domain gap thus generalizing well to the target datasets. Additionally, a detailed feasibility and pilot study is conducted to reflect the intuitive understanding of CD-FSL under our new setting. Experimental results show the effectiveness of our new setting and the proposed method. Codes and models are available at https://github.com/lovelyqian/Meta-FDMixup.

قيم البحث

اقرأ أيضاً

Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets. This setup faces challenges originating from the limited labeled data in each class and, ad ditionally, from the domain shift between training and test sets. In this paper, we introduce a novel training approach for existing FSC models. It leverages on the explanation scores, obtained from existing explanation methods when applied to the predictions of FSC models, computed for intermediate feature maps of the models. Firstly, we tailor the layer-wise relevance propagation (LRP) method to explain the predictions of FSC models. Secondly, we develop a model-agnostic explanation-guided training strategy that dynamically finds and emphasizes the features which are important for the predictions. Our contribution does not target a novel explanation method but lies in a novel application of explanations for the training phase. We show that explanation-guided training effectively improves the model generalization. We observe improved accuracy for three different FSC models: RelationNet, cross attention network, and a graph neural network-based formulation, on five few-shot learning datasets: miniImagenet, CUB, Cars, Places, and Plantae. The source code is available at https://github.com/SunJiamei/few-shot-lrp-guided
Few-shot segmentation has been attracting a lot of attention due to its effectiveness to segment unseen object classes with a few annotated samples. Most existing approaches use masked Global Average Pooling (GAP) to encode an annotated support image to a feature vector to facilitate query image segmentation. However, this pipeline unavoidably loses some discriminative information due to the average operation. In this paper, we propose a simple but effective self-guided learning approach, where the lost critical information is mined. Specifically, through making an initial prediction for the annotated support image, the covered and uncovered foreground regions are encoded to the primary and auxiliary support vectors using masked GAP, respectively. By aggregating both primary and auxiliary support vectors, better segmentation performances are obtained on query images. Enlightened by our self-guided module for 1-shot segmentation, we propose a cross-guided module for multiple shot segmentation, where the final mask is fused using predictions from multiple annotated samples with high-quality support vectors contributing more and vice versa. This module improves the final prediction in the inference stage without re-training. Extensive experiments show that our approach achieves new state-of-the-art performances on both PASCAL-5i and COCO-20i datasets.
93 - Xiao Lin , Meng Ye , Yunye Gong 2021
Adapting pre-trained representations has become the go-to recipe for learning new downstream tasks with limited examples. While literature has demonstrated great successes via representation learning, in this work, we show that substantial performanc e improvement of downstream tasks can also be achieved by appropriate designs of the adaptation process. Specifically, we propose a modular adaptation method that selectively performs multiple state-of-the-art (SOTA) adaptation methods in sequence. As different downstream tasks may require different types of adaptation, our modular adaptation enables the dynamic configuration of the most suitable modules based on the downstream task. Moreover, as an extension to existing cross-domain 5-way k-shot benchmarks (e.g., miniImageNet -> CUB), we create a new high-way (~100) k-shot benchmark with data from 10 different datasets. This benchmark provides a diverse set of domains and allows the use of stronger representations learned from ImageNet. Experimental results show that by customizing adaptation process towards downstream tasks, our modular adaptation pipeline (MAP) improves 3.1% in 5-shot classification accuracy over baselines of finetuning and Prototypical Networks.
Recent progress on few-shot learning largely relies on annotated data for meta-learning: base classes sampled from the same domain as the novel classes. However, in many applications, collecting data for meta-learning is infeasible or impossible. Thi s leads to the cross-domain few-shot learning problem, where there is a large shift between base and novel class domains. While investigations of the cross-domain few-shot scenario exist, these works are limited to natural images that still contain a high degree of visual similarity. No work yet exists that examines few-shot learning across different imaging methods seen in real world scenarios, such as aerial and medical imaging. In this paper, we propose the Broader Study of Cross-Domain Few-Shot Learning (BSCD-FSL) benchmark, consisting of image data from a diverse assortment of image acquisition methods. This includes natural images, such as crop disease images, but additionally those that present with an increasing dissimilarity to natural images, such as satellite images, dermatology images, and radiology images. Extensive experiments on the proposed benchmark are performed to evaluate state-of-art meta-learning approaches, transfer learning approaches, and newer methods for cross-domain few-shot learning. The results demonstrate that state-of-art meta-learning methods are surprisingly outperformed by earlier meta-learning approaches, and all meta-learning methods underperform in relation to simple fine-tuning by 12.8% average accuracy. Performance gains previously observed with methods specialized for cross-domain few-shot learning vanish in this more challenging benchmark. Finally, accuracy of all methods tend to correlate with dataset similarity to natural images, verifying the value of the benchmark to better represent the diversity of data seen in practice and guiding future research.
Unsupervised Domain Adaptation (UDA) transfers predictive models from a fully-labeled source domain to an unlabeled target domain. In some applications, however, it is expensive even to collect labels in the source domain, making most previous works impractical. To cope with this problem, recent work performed instance-wise cross-domain self-supervised learning, followed by an additional fine-tuning stage. However, the instance-wise self-supervised learning only learns and aligns low-level discriminative features. In this paper, we propose an end-to-end Prototypical Cross-domain Self-Supervised Learning (PCS) framework for Few-shot Unsupervised Domain Adaptation (FUDA). PCS not only performs cross-domain low-level feature alignment, but it also encodes and aligns semantic structures in the shared embedding space across domains. Our framework captures category-wise semantic structures of the data by in-domain prototypical contrastive learning; and performs feature alignment through cross-domain prototypical self-supervision. Compared with state-of-the-art methods, PCS improves the mean classification accuracy over different domain pairs on FUDA by 10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home, VisDA-2017, and DomainNet, respectively. Our project page is at http://xyue.io/pcs-fuda/index.html
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا