ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-Hall MTJ Cells for Intra-Column Competition in Hierarchical Temporal Memory

84   0   0.0 ( 0 )
 نشر من قبل Andrew Stephan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a dedicated winner-take-all circuit to efficiently implement the intra-column competition between cells in Hierarchical Temporal Memory which is a crucial part of the algorithm. All inputs and outputs are charge-based for compatibility with standard CMOS. The circuit incorporates memristors for competitive advantage to emulate a column with a cell in a predictive state. The circuit can also detect columns bursting by passive averaging and comparison of the cell outputs. The proposed spintronic devices and circuit are thoroughly described and a series of simulations are used to predict the performance. The simulations indicate that the circuit can complete a nine-cell, nine-input competition operation in under 15 ns at a cost of about 25 pJ.



قيم البحث

اقرأ أيضاً

We propose a new network architecture for standard spin-Hall magnetic tunnel junction-based spintronic neurons that allows them to compute multiple critical convolutional neural network functionalities simultaneously and in parallel, saving space and time. An approximation to the Rectified Linear Unit transfer function and the local pooling function are computed simultaneously with the convolution operation itself. A proof-of-concept simulation is performed on the MNIST dataset, achieving up to 98% accuracy at a cost of less than 1 nJ for all convolution, activation and pooling operations combined. The simulations are remarkably robust to thermal noise, performing well even with very small magnetic layers.
A new spintronic nonvolatile memory cell analogous to 1T DRAM with non-destructive read is proposed. The cells can be used as neural computing units. A dual-circuit neural network architecture is proposed to leverage these devices against the complex operations involved in convolutional networks. Simulations based on HSPICE and Matlab were performed to study the performance of this architecture when classifying images as well as the effect of varying the size and stability of the nanomagnets. The spintronic cells outperform a purely charge-based implementation of the same network, consuming about 100 pJ total per image processed.
This paper presents a physics-based modeling framework for the analysis and transient simulation of circuits containing Spin-Transfer Torque (STT) Magnetic Tunnel Junction (MTJ) devices. The framework provides the tools to analyze the stochastic beha vior of MTJs and to generate Verilog-A compact models for their simulation in large VLSI designs, addressing the need for an industry-ready model accounting for real-world reliability and scalability requirements. Device dynamics are described by the Landau-Lifshitz-Gilbert-Slonczewsky (s-LLGS ) stochastic magnetization considering Voltage-Controlled Magnetic Anisotropy (VCMA) and the non-negligible statistical effects caused by thermal noise. Model behavior is validated against the OOMMF magnetic simulator and its performance is characterized on a 1-Mb 28 nm Magnetoresistive-RAM (MRAM) memory product.
We report the performance characteristics of a notional Convolutional Neural Network based on the previously-proposed Multiply-Accumulate-Activate-Pool set, an MTJ-based spintronic circuit made to compute multiple neural functionalities in parallel. A study of image classification with the MNIST handwritten digits dataset using this network is provided via simulation. The effect of changing the weight representation precision, the severity of device process variation within the MAAP sets and the computational redundancy are provided. The emulated network achieves between 90 and 95% image classification accuracy at a cost of ~100 nJ per image.
The emerging brain-inspired computing paradigm known as hyperdimensional computing (HDC) has been proven to provide a lightweight learning framework for various cognitive tasks compared to the widely used deep learning-based approaches. Spatio-tempor al (ST) signal processing, which encompasses biosignals such as electromyography (EMG) and electroencephalography (EEG), is one family of applications that could benefit from an HDC-based learning framework. At the core of HDC lie manipulations and comparisons of large bit patterns, which are inherently ill-suited to conventional computing platforms based on the von-Neumann architecture. In this work, we propose an architecture for ST signal processing within the HDC framework using predominantly in-memory compute arrays. In particular, we introduce a methodology for the in-memory hyperdimensional encoding of ST data to be used together with an in-memory associative search module. We show that the in-memory HDC encoder for ST signals offers at least 1.80x energy efficiency gains, 3.36x area gains, as well as 9.74x throughput gains compared with a dedicated digital hardware implementation. At the same time it achieves a peak classification accuracy within 0.04% of that of the baseline HDC framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا