ﻻ يوجد ملخص باللغة العربية
We report the performance characteristics of a notional Convolutional Neural Network based on the previously-proposed Multiply-Accumulate-Activate-Pool set, an MTJ-based spintronic circuit made to compute multiple neural functionalities in parallel. A study of image classification with the MNIST handwritten digits dataset using this network is provided via simulation. The effect of changing the weight representation precision, the severity of device process variation within the MAAP sets and the computational redundancy are provided. The emulated network achieves between 90 and 95% image classification accuracy at a cost of ~100 nJ per image.
We propose a new network architecture for standard spin-Hall magnetic tunnel junction-based spintronic neurons that allows them to compute multiple critical convolutional neural network functionalities simultaneously and in parallel, saving space and
Convolutional Neural Networks (CNNs) are a class of Artificial Neural Networks(ANNs) that employ the method of convolving input images with filter-kernels for object recognition and classification purposes. In this paper, we propose a photonics circu
Neural networks are currently transforming the field of computer algorithms, yet their emulation on current computing substrates is highly inefficient. Reservoir computing was successfully implemented on a large variety of substrates and gave new ins
Undersampling the k-space data is widely adopted for acceleration of Magnetic Resonance Imaging (MRI). Current deep learning based approaches for supervised learning of MRI image reconstruction employ real-valued operations and representations by tre
This paper presents a physics-based modeling framework for the analysis and transient simulation of circuits containing Spin-Transfer Torque (STT) Magnetic Tunnel Junction (MTJ) devices. The framework provides the tools to analyze the stochastic beha