ﻻ يوجد ملخص باللغة العربية
The boundary modes of one dimensional quantum systems can play host to a variety of remarkable phenomena. They can be used to describe the physics of impurities in higher dimensional systems, such as the ubiquitous Kondo effect or can support Majorana bound states which play a crucial role in the realm of quantum computation. In this work we examine the boundary modes in an interacting quantum wire with a proximity induced pairing term. We solve the system exactly by Bethe Ansatz and show that for certain boundary conditions the spectrum contains bound states localized about either edge. The model is shown to exhibit a first order phase transition as a function of the interaction strength such that for attractive interactions the ground state has bound states at both ends of the wire while for repulsive interactions they are absent. In addition we see that the bound state energy lies within the gap for all values of the interaction strength but undergoes a sharp avoided level crossing for sufficiently strong interaction, thereby preventing its decay. This avoided crossing is shown to occur as a consequence of an exact self-duality which is present in the model.
We propose and investigate a simple one-dimensional model for a single-channel quantum wire hosting electrons that interact repulsively and are subject to a significant spin-orbit interaction. We show that an external Zeeman magnetic field, applied a
Noncentrosymmetric superconductors with line nodes are expected to possess topologically protected flat zero-energy bands of surface states, which can be described as Majorana modes. We here investigate their fate if residual interactions beyond BCS
For a large class of networks made of connected loops, in the presence of an external magnetic field of half flux quantum per loop, we show the existence of a large local symmetry group, generated by simultaneous flips of the electronic current in al
We present a method to construct number-conserving Hamiltonians whose ground states exactly reproduce an arbitrarily chosen BCS-type mean-field state. Such parent Hamiltonians can be constructed not only for the usual $s$-wave BCS state, but also for
Charge conserving spin singlet and spin triplet superconductors in one dimension are described by the $U(1)$ symmetric Thirring Hamiltonian. We solve the model with open boundary conditions on the a finite line segment by means of the Bethe Ansatz. W