ترغب بنشر مسار تعليمي؟ اضغط هنا

Xiaomingbot: A Multilingual Robot News Reporter

137   0   0.0 ( 0 )
 نشر من قبل Lei Li
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes the building of Xiaomingbot, an intelligent, multilingual and multimodal software robot equipped with four integral capabilities: news generation, news translation, news reading and avatar animation. Its system summarizes Chinese news that it automatically generates from data tables. Next, it translates the summary or the full article into multiple languages, and reads the multilingual rendition through synthesized speech. Notably, Xiaomingbot utilizes a voice cloning technology to synthesize the speech trained from a real persons voice data in one input language. The proposed system enjoys several merits: it has an animated avatar, and is able to generate and read multilingual news. Since it was put into practice, Xiaomingbot has written over 600,000 articles, and gained over 150,000 followers on social media platforms.

قيم البحث

اقرأ أيضاً

This paper introduces Multilingual LibriSpeech (MLS) dataset, a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages, including about 44.5K hours of English and a total of about 6K hours for other languages. Additionally, we provide Language Models (LM) and baseline Automatic Speech Recognition (ASR) models and for all the languages in our dataset. We believe such a large transcribed dataset will open new avenues in ASR and Text-To-Speech (TTS) research. The dataset will be made freely available for anyone at http://www.openslr.org.
In this work, we explore the benefits of using multilingual bottleneck features (mBNF) in acoustic modelling for the automatic speech recognition of code-switched (CS) speech in African languages. The unavailability of annotated corpora in the langua ges of interest has always been a primary challenge when developing speech recognition systems for this severely under-resourced type of speech. Hence, it is worthwhile to investigate the potential of using speech corpora available for other better-resourced languages to improve speech recognition performance. To achieve this, we train a mBNF extractor using nine Southern Bantu languages that form part of the freely available multilingual NCHLT corpus. We append these mBNFs to the existing MFCCs, pitch features and i-vectors to train acoustic models for automatic speech recognition (ASR) in the target code-switched languages. Our results show that the inclusion of the mBNF features leads to clear performance improvements over a baseline trained without the mBNFs for code-switched English-isiZulu, English-isiXhosa, English-Sesotho and English-Setswana speech.
194 - Long Zhou , Jinyu Li , Eric Sun 2021
Multilingual automatic speech recognition (ASR) models have shown great promise in recent years because of the simplified model training and deployment process. Conventional methods either train a universal multilingual model without taking any langu age information or with a 1-hot language ID (LID) vector to guide the recognition of the target language. In practice, the user can be prompted to pre-select several languages he/she can speak. The multilingual model without LID cannot well utilize the language information set by the user while the multilingual model with LID can only handle one pre-selected language. In this paper, we propose a novel configurable multilingual model (CMM) which is trained only once but can be configured as different models based on users choices by extracting language-specific modules together with a universal model from the trained CMM. Particularly, a single CMM can be deployed to any user scenario where the users can pre-select any combination of languages. Trained with 75K hours of transcribed anonymized Microsoft multilingual data and evaluated with 10-language test sets, the proposed CMM improves from the universal multilingual model by 26.0%, 16.9%, and 10.4% relative word error reduction when the user selects 1, 2, or 3 languages, respectively. CMM also performs significantly better on code-switching test sets.
Subword modeling for zero-resource languages aims to learn low-level representations of speech audio without using transcriptions or other resources from the target language (such as text corpora or pronunciation dictionaries). A good representation should capture phonetic content and abstract away from other types of variability, such as speaker differences and channel noise. Previous work in this area has primarily focused unsupervised learning from target language data only, and has been evaluated only intrinsically. Here we directly compare multiple methods, including some that use only target language speech data and some that use transcribed speech from other (non-target) languages, and we evaluate using two intrinsic measures as well as on a downstream unsupervised word segmentation and clustering task. We find that combining two existing target-language-only methods yields better features than either method alone. Nevertheless, even better results are obtained by extracting target language bottleneck features using a model trained on other languages. Cross-lingual training using just one other language is enough to provide this benefit, but multilingual training helps even more. In addition to these results, which hold across both intrinsic measures and the extrinsic task, we discuss the qualitative differences between the different types of learned features.
The idea of combining multiple languages recordings to train a single automatic speech recognition (ASR) model brings the promise of the emergence of universal speech representation. Recently, a Transformer encoder-decoder model has been shown to lev erage multilingual data well in IPA transcriptions of languages presented during training. However, the representations it learned were not successful in zero-shot transfer to unseen languages. Because that model lacks an explicit factorization of the acoustic model (AM) and language model (LM), it is unclear to what degree the performance suffered from differences in pronunciation or the mismatch in phonotactics. To gain more insight into the factors limiting zero-shot ASR transfer, we replace the encoder-decoder with a hybrid ASR system consisting of a separate AM and LM. Then, we perform an extensive evaluation of monolingual, multilingual, and crosslingual (zero-shot) acoustic and language models on a set of 13 phonetically diverse languages. We show that the gain from modeling crosslingual phonotactics is limited, and imposing a too strong model can hurt the zero-shot transfer. Furthermore, we find that a multilingual LM hurts a multilingual ASR systems performance, and retaining only the target languages phonotactic data in LM training is preferable.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا