ترغب بنشر مسار تعليمي؟ اضغط هنا

Multilingual and Unsupervised Subword Modeling for Zero-Resource Languages

122   0   0.0 ( 0 )
 نشر من قبل Enno Hermann
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Subword modeling for zero-resource languages aims to learn low-level representations of speech audio without using transcriptions or other resources from the target language (such as text corpora or pronunciation dictionaries). A good representation should capture phonetic content and abstract away from other types of variability, such as speaker differences and channel noise. Previous work in this area has primarily focused unsupervised learning from target language data only, and has been evaluated only intrinsically. Here we directly compare multiple methods, including some that use only target language speech data and some that use transcribed speech from other (non-target) languages, and we evaluate using two intrinsic measures as well as on a downstream unsupervised word segmentation and clustering task. We find that combining two existing target-language-only methods yields better features than either method alone. Nevertheless, even better results are obtained by extracting target language bottleneck features using a model trained on other languages. Cross-lingual training using just one other language is enough to provide this benefit, but multilingual training helps even more. In addition to these results, which hold across both intrinsic measures and the extrinsic task, we discuss the qualitative differences between the different types of learned features.

قيم البحث

اقرأ أيضاً

We study training a single acoustic model for multiple languages with the aim of improving automatic speech recognition (ASR) performance on low-resource languages, and over-all simplifying deployment of ASR systems that support diverse languages. We perform an extensive benchmark on 51 languages, with varying amount of training data by language(from 100 hours to 1100 hours). We compare three variants of multilingual training from a single joint model without knowing the input language, to using this information, to multiple heads (one per language cluster). We show that multilingual training of ASR models on several languages can improve recognition performance, in particular, on low resource languages. We see 20.9%, 23% and 28.8% average WER relative reduction compared to monolingual baselines on joint model, joint model with language input and multi head model respectively. To our knowledge, this is the first work studying multilingual ASR at massive scale, with more than 50 languages and more than 16,000 hours of audio across them.
The idea of combining multiple languages recordings to train a single automatic speech recognition (ASR) model brings the promise of the emergence of universal speech representation. Recently, a Transformer encoder-decoder model has been shown to lev erage multilingual data well in IPA transcriptions of languages presented during training. However, the representations it learned were not successful in zero-shot transfer to unseen languages. Because that model lacks an explicit factorization of the acoustic model (AM) and language model (LM), it is unclear to what degree the performance suffered from differences in pronunciation or the mismatch in phonotactics. To gain more insight into the factors limiting zero-shot ASR transfer, we replace the encoder-decoder with a hybrid ASR system consisting of a separate AM and LM. Then, we perform an extensive evaluation of monolingual, multilingual, and crosslingual (zero-shot) acoustic and language models on a set of 13 phonetically diverse languages. We show that the gain from modeling crosslingual phonotactics is limited, and imposing a too strong model can hurt the zero-shot transfer. Furthermore, we find that a multilingual LM hurts a multilingual ASR systems performance, and retaining only the target languages phonotactic data in LM training is preferable.
In this work, we explore the benefits of using multilingual bottleneck features (mBNF) in acoustic modelling for the automatic speech recognition of code-switched (CS) speech in African languages. The unavailability of annotated corpora in the langua ges of interest has always been a primary challenge when developing speech recognition systems for this severely under-resourced type of speech. Hence, it is worthwhile to investigate the potential of using speech corpora available for other better-resourced languages to improve speech recognition performance. To achieve this, we train a mBNF extractor using nine Southern Bantu languages that form part of the freely available multilingual NCHLT corpus. We append these mBNFs to the existing MFCCs, pitch features and i-vectors to train acoustic models for automatic speech recognition (ASR) in the target code-switched languages. Our results show that the inclusion of the mBNF features leads to clear performance improvements over a baseline trained without the mBNFs for code-switched English-isiZulu, English-isiXhosa, English-Sesotho and English-Setswana speech.
194 - Long Zhou , Jinyu Li , Eric Sun 2021
Multilingual automatic speech recognition (ASR) models have shown great promise in recent years because of the simplified model training and deployment process. Conventional methods either train a universal multilingual model without taking any langu age information or with a 1-hot language ID (LID) vector to guide the recognition of the target language. In practice, the user can be prompted to pre-select several languages he/she can speak. The multilingual model without LID cannot well utilize the language information set by the user while the multilingual model with LID can only handle one pre-selected language. In this paper, we propose a novel configurable multilingual model (CMM) which is trained only once but can be configured as different models based on users choices by extracting language-specific modules together with a universal model from the trained CMM. Particularly, a single CMM can be deployed to any user scenario where the users can pre-select any combination of languages. Trained with 75K hours of transcribed anonymized Microsoft multilingual data and evaluated with 10-language test sets, the proposed CMM improves from the universal multilingual model by 26.0%, 16.9%, and 10.4% relative word error reduction when the user selects 1, 2, or 3 languages, respectively. CMM also performs significantly better on code-switching test sets.
Acoustic word embeddings (AWEs) are fixed-dimensional representations of variable-length speech segments. For zero-resource languages where labelled data is not available, one AWE approach is to use unsupervised autoencoder-based recurrent models. An other recent approach is to use multilingual transfer: a supervised AWE model is trained on several well-resourced languages and then applied to an unseen zero-resource language. We consider how a recent contrastive learning loss can be used in both the purely unsupervised and multilingual transfer settings. Firstly, we show that terms from an unsupervised term discovery system can be used for contrastive self-supervision, resulting in improvements over previous unsupervised monolingual AWE models. Secondly, we consider how multilingual AWE models can be adapted to a specific zero-resource language using discovered terms. We find that self-supervised contrastive adaptation outperforms adapted multilingual correspondence autoencoder and Siamese AWE models, giving the best overall results in a word discrimination task on six zero-resource languages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا