ترغب بنشر مسار تعليمي؟ اضغط هنا

Extendable and invertible manifold learning with geometry regularized autoencoders

61   0   0.0 ( 0 )
 نشر من قبل Andres Felipe Duque Correa
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

A fundamental task in data exploration is to extract simplified low dimensional representations that capture intrinsic geometry in data, especially for faithfully visualizing data in two or three dimensions. Common approaches to this task use kernel methods for manifold learning. However, these methods typically only provide an embedding of fixed input data and cannot extend to new data points. Autoencoders have also recently become popular for representation learning. But while they naturally compute feature extractors that are both extendable to new data and invertible (i.e., reconstructing original features from latent representation), they have limited capabilities to follow global intrinsic geometry compared to kernel-based manifold learning. We present a new method for integrating both approaches by incorporating a geometric regularization term in the bottleneck of the autoencoder. Our regularization, based on the diffusion potential distances from the recently-proposed PHATE visualization method, encourages the learned latent representation to follow intrinsic data geometry, similar to manifold learning algorithms, while still enabling faithful extension to new data and reconstruction of data in the original feature space from latent coordinates. We compare our approach with leading kernel methods and autoencoder models for manifold learning to provide qualitative and quantitative evidence of our advantages in preserving intrinsic structure, out of sample extension, and reconstruction. Our method is easily implemented for big-data applications, whereas other methods are limited in this regard.



قيم البحث

اقرأ أيضاً

148 - Nina Miolane , Susan Holmes 2019
Manifold-valued data naturally arises in medical imaging. In cognitive neuroscience, for instance, brain connectomes base the analysis of coactivation patterns between different brain regions on the analysis of the correlations of their functional Ma gnetic Resonance Imaging (fMRI) time series - an object thus constrained by construction to belong to the manifold of symmetric positive definite matrices. One of the challenges that naturally arises consists of finding a lower-dimensional subspace for representing such manifold-valued data. Traditional techniques, like principal component analysis, are ill-adapted to tackle non-Euclidean spaces and may fail to achieve a lower-dimensional representation of the data - thus potentially pointing to the absence of lower-dimensional representation of the data. However, these techniques are restricted in that: (i) they do not leverage the assumption that the connectomes belong on a pre-specified manifold, therefore discarding information; (ii) they can only fit a linear subspace to the data. In this paper, we are interested in variants to learn potentially highly curved submanifolds of manifold-valued data. Motivated by the brain connectomes example, we investigate a latent variable generative model, which has the added benefit of providing us with uncertainty estimates - a crucial quantity in the medical applications we are considering. While latent variable models have been proposed to learn linear and nonlinear spaces for Euclidean data, or geodesic subspaces for manifold data, no intrinsic latent variable model exists to learn nongeodesic subspaces for manifold data. This paper fills this gap and formulates a Riemannian variational autoencoder with an intrinsic generative model of manifold-valued data. We evaluate its performances on synthetic and real datasets by introducing the formalism of weighted Riemannian submanifolds.
Relational regularized autoencoder (RAE) is a framework to learn the distribution of data by minimizing a reconstruction loss together with a relational regularization on the latent space. A recent attempt to reduce the inner discrepancy between the prior and aggregated posterior distributions is to incorporate sliced fused Gromov-Wasserstein (SFG) between these distributions. That approach has a weakness since it treats every slicing direction similarly, meanwhile several directions are not useful for the discriminative task. To improve the discrepancy and consequently the relational regularization, we propose a new relational discrepancy, named spherical sliced fused Gromov Wasserstein (SSFG), that can find an important area of projections characterized by a von Mises-Fisher distribution. Then, we introduce two variants of SSFG to improve its performance. The first variant, named mixture spherical sliced fused Gromov Wasserstein (MSSFG), replaces the vMF distribution by a mixture of von Mises-Fisher distributions to capture multiple important areas of directions that are far from each other. The second variant, named power spherical sliced fused Gromov Wasserstein (PSSFG), replaces the vMF distribution by a power spherical distribution to improve the sampling time in high dimension settings. We then apply the new discrepancies to the RAE framework to achieve its new variants. Finally, we conduct extensive experiments to show that the new proposed autoencoders have favorable performance in learning latent manifold structure, image generation, and reconstruction.
111 - Bingling Wang , Qing Zhou 2020
Discovery of causal relationships from observational data is an important problem in many areas. Several recent results have established the identifiability of causal DAGs with non-Gaussian and/or nonlinear structural equation models (SEMs). In this paper, we focus on nonlinear SEMs defined by non-invertible functions, which exist in many data domains, and propose a novel test for non-invertible bivariate causal models. We further develop a method to incorporate this test in structure learning of DAGs that contain both linear and nonlinear causal relations. By extensive numerical comparisons, we show that our algorithms outperform existing DAG learning methods in identifying causal graphical structures. We illustrate the practical application of our method in learning causal networks for combinatorial binding of transcription factors from ChIP-Seq data.
Dimension reduction (DR) aims to learn low-dimensional representations of high-dimensional data with the preservation of essential information. In the context of manifold learning, we define that the representation after information-lossless DR prese rves the topological and geometric properties of data manifolds formally, and propose a novel two-stage DR method, called invertible manifold learning (inv-ML) to bridge the gap between theoretical information-lossless and practical DR. The first stage includes a homeomorphic sparse coordinate transformation to learn low-dimensional representations without destroying topology and a local isometry constraint to preserve local geometry. In the second stage, a linear compression is implemented for the trade-off between the target dimension and the incurred information loss in excessive DR scenarios. Experiments are conducted on seven datasets with a neural network implementation of inv-ML, called i-ML-Enc. Empirically, i-ML-Enc achieves invertible DR in comparison with typical existing methods as well as reveals the characteristics of the learned manifolds. Through latent space interpolation on real-world datasets, we find that the reliability of tangent space approximated by the local neighborhood is the key to the success of manifold-based DR algorithms.
Normalizing flows are invertible neural networks with tractable change-of-volume terms, which allows optimization of their parameters to be efficiently performed via maximum likelihood. However, data of interest is typically assumed to live in some ( often unknown) low-dimensional manifold embedded in high-dimensional ambient space. The result is a modelling mismatch since -- by construction -- the invertibility requirement implies high-dimensional support of the learned distribution. Injective flows, mapping from low- to high-dimensional space, aim to fix this discrepancy by learning distributions on manifolds, but the resulting volume-change term becomes more challenging to evaluate. Current approaches either avoid computing this term entirely using various heuristics, or assume the manifold is known beforehand and therefore are not widely applicable. Instead, we propose two methods to tractably calculate the gradient of this term with respect to the parameters of the model, relying on careful use of automatic differentiation and techniques from numerical linear algebra. Both approaches perform end-to-end nonlinear manifold learning and density estimation for data projected onto this manifold. We study the trade-offs between our proposed methods, empirically verify that we outperform approaches ignoring the volume-change term by more accurately learning manifolds and the corresponding distributions on them, and show promising results on out-of-distribution detection.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا