ترغب بنشر مسار تعليمي؟ اضغط هنا

Causal network learning with non-invertible functional relationships

112   0   0.0 ( 0 )
 نشر من قبل Qing Zhou
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Discovery of causal relationships from observational data is an important problem in many areas. Several recent results have established the identifiability of causal DAGs with non-Gaussian and/or nonlinear structural equation models (SEMs). In this paper, we focus on nonlinear SEMs defined by non-invertible functions, which exist in many data domains, and propose a novel test for non-invertible bivariate causal models. We further develop a method to incorporate this test in structure learning of DAGs that contain both linear and nonlinear causal relations. By extensive numerical comparisons, we show that our algorithms outperform existing DAG learning methods in identifying causal graphical structures. We illustrate the practical application of our method in learning causal networks for combinatorial binding of transcription factors from ChIP-Seq data.



قيم البحث

اقرأ أيضاً

A fundamental task in data exploration is to extract simplified low dimensional representations that capture intrinsic geometry in data, especially for faithfully visualizing data in two or three dimensions. Common approaches to this task use kernel methods for manifold learning. However, these methods typically only provide an embedding of fixed input data and cannot extend to new data points. Autoencoders have also recently become popular for representation learning. But while they naturally compute feature extractors that are both extendable to new data and invertible (i.e., reconstructing original features from latent representation), they have limited capabilities to follow global intrinsic geometry compared to kernel-based manifold learning. We present a new method for integrating both approaches by incorporating a geometric regularization term in the bottleneck of the autoencoder. Our regularization, based on the diffusion potential distances from the recently-proposed PHATE visualization method, encourages the learned latent representation to follow intrinsic data geometry, similar to manifold learning algorithms, while still enabling faithful extension to new data and reconstruction of data in the original feature space from latent coordinates. We compare our approach with leading kernel methods and autoencoder models for manifold learning to provide qualitative and quantitative evidence of our advantages in preserving intrinsic structure, out of sample extension, and reconstruction. Our method is easily implemented for big-data applications, whereas other methods are limited in this regard.
We present a methodology for integrating functional data into deep densely connected feed-forward neural networks. The model is defined for scalar responses with multiple functional and scalar covariates. A by-product of the method is a set of dynami c functional weights that can be visualized during the optimization process. This visualization leads to greater interpretability of the relationship between the covariates and the response relative to conventional neural networks. The model is shown to perform well in a number of contexts including prediction of new data and recovery of the true underlying functional weights; these results were confirmed through real applications and simulation studies. A forthcoming R package is developed on top of a popular deep learning library (Keras) allowing for general use of the approach.
Discovering causal structures from data is a challenging inference problem of fundamental importance in all areas of science. The appealing scaling properties of neural networks have recently led to a surge of interest in differentiable neural networ k-based methods for learning causal structures from data. So far differentiable causal discovery has focused on static datasets of observational or interventional origin. In this work, we introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process. Our method significantly reduces the required number of interactions compared with random intervention targeting and is applicable for both discrete and continuous optimization formulations of learning the underlying directed acyclic graph (DAG) from data. We examine the proposed method across a wide range of settings and demonstrate superior performance on multiple benchmarks from simulated to real-world data.
We develop a functional encoder-decoder approach to supervised meta-learning, where labeled data is encoded into an infinite-dimensional functional representation rather than a finite-dimensional one. Furthermore, rather than directly producing the r epresentation, we learn a neural update rule resembling functional gradient descent which iteratively improves the representation. The final representation is used to condition the decoder to make predictions on unlabeled data. Our approach is the first to demonstrates the success of encoder-decoder style meta-learning methods like conditional neural processes on large-scale few-shot classification benchmarks such as miniImageNet and tieredImageNet, where it achieves state-of-the-art performance.
The inference of causal relationships using observational data from partially observed multivariate systems with hidden variables is a fundamental question in many scientific domains. Methods extracting causal information from conditional independenc ies between variables of a system are common tools for this purpose, but are limited in the lack of independencies. To surmount this limitation, we capitalize on the fact that the laws governing the generative mechanisms of a system often result in substructures embodied in the generative functional equation of a variable, which act as sufficient statistics for the influence that other variables have on it. These functional sufficient statistics constitute intermediate hidden variables providing new conditional independencies to be tested. We propose to use the Information Bottleneck method, a technique commonly applied for dimensionality reduction, to find underlying sufficient sets of statistics. Using these statistics we formulate new additional rules of causal orientation that provide causal information not obtainable from standard structure learning algorithms, which exploit only conditional independencies between observable variables. We validate the use of sufficient statistics for structure learning both with simulated systems built to contain specific sufficient statistics and with benchmark data from regulatory rules previously and independently proposed to model biological signal transduction networks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا