ترغب بنشر مسار تعليمي؟ اضغط هنا

PRI-VAE: Principle-of-Relevant-Information Variational Autoencoders

185   0   0.0 ( 0 )
 نشر من قبل Yanjun Li
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Although substantial efforts have been made to learn disentangled representations under the variational autoencoder (VAE) framework, the fundamental properties to the dynamics of learning of most VAE models still remain unknown and under-investigated. In this work, we first propose a novel learning objective, termed the principle-of-relevant-information variational autoencoder (PRI-VAE), to learn disentangled representations. We then present an information-theoretic perspective to analyze existing VAE models by inspecting the evolution of some critical information-theoretic quantities across training epochs. Our observations unveil some fundamental properties associated with VAEs. Empirical results also demonstrate the effectiveness of PRI-VAE on four benchmark data sets.



قيم البحث

اقرأ أيضاً

Stochastic processes provide a mathematically elegant way model complex data. In theory, they provide flexible priors over function classes that can encode a wide range of interesting assumptions. In practice, however, efficient inference by optimisa tion or marginalisation is difficult, a problem further exacerbated with big data and high dimensional input spaces. We propose a novel variational autoencoder (VAE) called the prior encoding variational autoencoder ($pi$VAE). The $pi$VAE is finitely exchangeable and Kolmogorov consistent, and thus is a continuous stochastic process. We use $pi$VAE to learn low dimensional embeddings of function classes. We show that our framework can accurately learn expressive function classes such as Gaussian processes, but also properties of functions to enable statistical inference (such as the integral of a log Gaussian process). For popular tasks, such as spatial interpolation, $pi$VAE achieves state-of-the-art performance both in terms of accuracy and computational efficiency. Perhaps most usefully, we demonstrate that the low dimensional independently distributed latent space representation learnt provides an elegant and scalable means of performing Bayesian inference for stochastic processes within probabilistic programming languages such as Stan.
Variational autoencoders (VAEs) are one of the powerful likelihood-based generative models with applications in various domains. However, they struggle to generate high-quality images, especially when samples are obtained from the prior without any t empering. One explanation for VAEs poor generative quality is the prior hole problem: the prior distribution fails to match the aggregate approximate posterior. Due to this mismatch, there exist areas in the latent space with high density under the prior that do not correspond to any encoded image. Samples from those areas are decoded to corrupted images. To tackle this issue, we propose an energy-based prior defined by the product of a base prior distribution and a reweighting factor, designed to bring the base closer to the aggregate posterior. We train the reweighting factor by noise contrastive estimation, and we generalize it to hierarchical VAEs with many latent variable groups. Our experiments confirm that the proposed noise contrastive priors improve the generative performance of state-of-the-art VAEs by a large margin on the MNIST, CIFAR-10, CelebA 64, and CelebA HQ 256 datasets.
A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders with arbitrary m anifolds as a latent space. A Diffusion Variational Autoencoder uses transition kernels of Brownian motion on the manifold. In particular, it uses properties of the Brownian motion to implement the reparametrization trick and fast approximations to the KL divergence. We show that the Diffusion Variational Autoencoder is capable of capturing topological properties of synthetic datasets. Additionally, we train MNIST on spheres, tori, projective spaces, SO(3), and a torus embedded in R3. Although a natural dataset like MNIST does not have latent variables with a clear-cut topological structure, training it on a manifold can still highlight topological and geometrical properties.
This paper introduces a new member of the family of Variational Autoencoders (VAE) that constrains the rate of information transferred by the latent layer. The latent layer is interpreted as a communication channel, the information rate of which is b ound by imposing a pre-set signal-to-noise ratio. The new constraint subsumes the mutual information between the input and latent variables, combining naturally with the likelihood objective of the observed data as used in a conventional VAE. The resulting Bounded-Information-Rate Variational Autoencoder (BIR-VAE) provides a meaningful latent representation with an information resolution that can be specified directly in bits by the system designer. The rate constraint can be used to prevent overtraining, and the method naturally facilitates quantisation of the latent variables at the set rate. Our experiments confirm that the BIR-VAE has a meaningful latent representation and that its performance is at least as good as state-of-the-art competing algorithms, but with lower computational complexity.
Variational autoencoders (VAE) are a powerful and widely-used class of models to learn complex data distributions in an unsupervised fashion. One important limitation of VAEs is the prior assumption that latent sample representations are independent and identically distributed. However, for many important datasets, such as time-series of images, this assumption is too strong: accounting for covariances between samples, such as those in time, can yield to a more appropriate model specification and improve performance in downstream tasks. In this work, we introduce a new model, the Gaussian Process (GP) Prior Variational Autoencoder (GPPVAE), to specifically address this issue. The GPPVAE aims to combine the power of VAEs with the ability to model correlations afforded by GP priors. To achieve efficient inference in this new class of models, we leverage structure in the covariance matrix, and introduce a new stochastic backpropagation strategy that allows for computing stochastic gradients in a distributed and low-memory fashion. We show that our method outperforms conditional VAEs (CVAEs) and an adaptation of standard VAEs in two image data applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا